High Performance Brakes: Carbon Ceramic Rotors

High Performance Brakes: Carbon Ceramic Rotors

Would you spend $8,000 to $12,000 for an optional brake package on your next vehicle? What if I told you they would never fade, improve gas mileage and maybe need a change every 180,000 miles? Ceramic composite or carbon ceramic brake rotors and pads offer these advantages and more.

While it may seem like these systems are untouchable like some super models, this expensive option on some high performance vehicles could be the brake of the future if they manage to bring the costs down.

Ceramic composite rotors are extremely durable. In fact, manufacturers claim that they’ll never need replacement — at least with "normal" driving. They’re also resistant to the kind of distortions and wear that leads to pedal pulsation — merely an annoyance in the “real world,” but a noticeable performance issue on the track.
Manufacturing
The brake discs are formed from a specially treated carbon-fiber compound that is silicated in a high-vacuum process at higher temperatures then any stop could produce. Not only are the resulting discs much harder than standard discs, they are more resistant to heat. The process used to produce the discs for CCB is complex and time-consuming  and costly when compared to cast iron.

The carbon fibers are blended with a resin of carbon and silicon. The mixture is pressed into a mold to create the basic disc shape, including its internal cooling vents. Using heat up to 3,000º F, the resin is converted to silicon carbide, a material nearly as hard as diamond. This is the “ceramic” in “carbon ceramic.” If you tried to machine these rotors, you would need diamond tipped bits in your brake lathe.
The low thermal expansion of the brake discs prevents deformation under heavy braking. Furthermore, the ceramic brake discs are totally resistant to corrosion and offer more favorable noise-damping properties.
 
Advantages
Because of their exceptional performance in extreme conditions, ceramic composite brakes were developed for use in high-level motorsports competition. Porsche was the first automaker to apply them for road use, with Porsche Ceramic Composite Brakes included as standard equipment in the Porsche GT2 and Carrera GT and as an option in most other models.

Ceramic composite brake discs provide a 50-percent weight savings compared to conventional metal discs. This reduces unsprung weight, enhances shock absorber response and vehicle handling, and also improves fuel efficiency and contributes to reduced emissions.

Ceramic composite brake discs have an extremely hard surface that provides consistent frictional values throughout the deceleration process, even in braking from extremely high speeds and at high operating temperatures, such as those generated from repeated braking. But the system also provides benefits in low-speed situations.  In the event of an emergency stop, the technology does not require heavy pedal forces or outside technological boosting assistance to achieve maximum and immediate stopping force.

With cross-drilled discs and pads that are resistant to water absorption, the ceramic composite brakes provide superior response in wet conditions as well as dry. Because of their hard surface and immunity to salt corrosion, Porsche Ceramic Composite Brakes have an extremely long operating life.
Service Life
Porsche Ceramic Composite Brakes have been on the market for almost 10 years. There have been no recalls or lawsuits. There have been some complaints on low speed noise, but Porsche’s advice is to warm them up.

The only real complaints with the ceramic disc have come from weekend racers who have experienced cracked discs due to extreme abuse. Porsche’s advice to these drives is to check for cracks before they head out to the track. With the replacement costs of four disc and pads costing more than $20,000, many are switching to cast iron rotors and semi-metallic pads.  

You May Also Like

Adjusting Parking Brakes

You should never estimate when it comes to parking brake adjustments.

The parking or emergency brake has to perform two distinct jobs. First, it must be able to hold the vehicle on an incline. Second, it must be able to stop a vehicle under a specific distance if the hydraulic brakes have failed. These standards are set by the Department of Transportation (DOT), and the kicker is these standards must be met with the force applied by a little old lady. But, over time, the cables can stretch and the friction materials change their length and thickness, which is why adjustments to the system are required.

Charging More for Brake Jobs

Here’s why charging more for brake jobs keeps customers coming back.

Servicing Multi-Piston Brake Calipers

Caliper replacement may be necessary in high-mileage vehicles because of fluid leaks or because the calipers are sticking.

Wheel Bearings

Higher quality wheel bearings use higher quality steel that is properly heat treated.

EV Brake Jobs

With these vehicles, the major aggravation for shops is brake noise and uneven brake pad wear.

Other Posts

Brake Fluid 101: What Does Brake Fluid Do? What is the Difference Between DOT 3 vs. DOT 4?

When you think about the braking system of a vehicle, you probably think about the major parts you see when removing the wheel: brake pads, rotors, calipers and maybe hydraulics. However, one of the most important parts of the system isn’t visible: brake fluid. Brake fluid comes in several formulations for different applications and plays

Brake Pad Diagnostics

Worn brake pads can tell you a lot about the entire brake system and keep new components from suffering the same fate.

Understanding Passive Wheel Speed Sensor Operation

Passive types of wheel speed sensors are still used in many applications so understanding their operation is important.

Gen 1 Wheel Bearings

Removing and installing these bearings requires the correct tools and patience.