Understanding Passive Wheel Speed Sensor Operation

Understanding Passive Wheel Speed Sensor Operation

Passive types of wheel speed sensors are still used in many applications so understanding their operation is important.

As the metal tooth passed by the permanent magnet wrapped in copper wire, the magnetic field was altered and measured by a computer. This is not a sci-fi novel, but how a passive wheel speed sensor works. 

A passive wheel speed sensor is often called a “variable reluctance sensor” by some engineers. The sensor is mounted at a specific gap from a toothed reluctor ring. As the teeth pass by the wheel speed sensor, it changes the magnetic field and produces alternating current or AC voltage. The AC voltage can be seen by a scope as a sine wave. 

The voltage signal will increase in amplitude with an increase in the speed of the reluctor ring. The change in amplitude can affect the switching toggle to the computer, where a cracked reluctor ring may produce an extra switching toggle. The variable-reluctance sensor is a two-wire sensor in a hub unit between the bearing races. 

Passive sensors are less accurate and might read 3-5 mph on a scan tool when the vehicle is sitting still. Passive sensors are still used on the rear of some vehicles and the front wheels will have more accurate active sensors that can detect wheel movement at much lower speeds. 

Testing

With the meter set to AC voltage, spin the wheel by hand. The sensor should produce between 0.5 to 1 volt of AC current. The faster the wheel is turned, the more voltage is produced. A scope can be used to observe the waveform. Changes to the sine wave can indicate problems with the reluctor ring or sensor.

If the signal is viewed on a scope, the voltage will rise above the ground or zero line. On this vehicle, there is a 2.5-volt bias. To measure this, have the ground lead on the battery ground, and the positive lead connected to the signal wire. Without the wheel spinning, you can observe the DC voltage being supplied to the circuit.

Bias Voltage Self Diagnostics

When a vehicle is first started and the ABS module wakes up, it sends DC voltage to the wheel speed sensors for a split second. The ABS module is looking at the voltage coming back from the sensor. High resistance or an open circuit can immediately be detected because the voltage coming back to the module will be too low or not at all. Often, with these systems the trouble is not the sensor, but the bias voltage as it goes through the harness and connectors.

With the sensor disconnected, connect the positive lead to the signal wire and the negative lead to the other side that is the ground for the ABS module. This voltage comes directly from the ABS module and will be between 1.5 and 5 volts. This is the bias voltage from the ABS module. Any voltage outside of the manufacturer’s specification may indicate a problem with the harness.

Unwanted ABS Activation In Passive Sensors

You may have a driver complain that the ABS system activates during conditions when it should not, like coming to a stop below 10 mph. The most likely suspects are the wheel speed sensor and the reluctor ring. 

Metal debris can build up on the tip of the wheel speed sensor. This changes the signal and reduces the amount of AC voltage the magnet and coils generate. Damage to the coils surrounding the magnet can also alter the signal. The metallic debris can alter the signal and make the ABS module think one wheel is stopped compared the other wheels.

Damage to the reluctor ring changes the air gap. The most common issue is corrosion between ring and the rotating component. As the corrosion gets under the reluctor ring, it changes the air gap and signal coming from the wheel speed sensor.

You May Also Like

Adjusting Parking Brakes

You should never estimate when it comes to parking brake adjustments.

The parking or emergency brake has to perform two distinct jobs. First, it must be able to hold the vehicle on an incline. Second, it must be able to stop a vehicle under a specific distance if the hydraulic brakes have failed. These standards are set by the Department of Transportation (DOT), and the kicker is these standards must be met with the force applied by a little old lady. But, over time, the cables can stretch and the friction materials change their length and thickness, which is why adjustments to the system are required.

Charging More for Brake Jobs

Here’s why charging more for brake jobs keeps customers coming back.

Servicing Multi-Piston Brake Calipers

Caliper replacement may be necessary in high-mileage vehicles because of fluid leaks or because the calipers are sticking.

Wheel Bearings

Higher quality wheel bearings use higher quality steel that is properly heat treated.

EV Brake Jobs

With these vehicles, the major aggravation for shops is brake noise and uneven brake pad wear.

Other Posts

Brake Fluid 101: What Does Brake Fluid Do? What is the Difference Between DOT 3 vs. DOT 4?

When you think about the braking system of a vehicle, you probably think about the major parts you see when removing the wheel: brake pads, rotors, calipers and maybe hydraulics. However, one of the most important parts of the system isn’t visible: brake fluid. Brake fluid comes in several formulations for different applications and plays

Understanding ADAS: Blindspot Detection Systems

With the right tools and service information, it is possible to resolve a customer’s complaint. 

Brake Pad Diagnostics

Worn brake pads can tell you a lot about the entire brake system and keep new components from suffering the same fate.

Diagnosing Hub Unit Wheel Speed Sensor Codes

For the technician, it can be frustrating. The wheel speed sensors are some of the longest circuits in the vehicle.