Torque-To-Yield Fasteners For Undercar Components

Torque-To-Yield Fasteners For Undercar Components

The desired result of tightening a fastener is to obtain a proper clamping force between parts. The clamping force prevents loosening when the vehicle is in use and external forces act on the clamped parts. All fasteners have a specified torque. The method used for a particular application is determined by engineering and specified in the service information. It is necessary to apply the fastener torque to the specific fastener identified.


The desired result of tightening a fastener is to obtain a proper clamping force between parts. The clamping force prevents loosening when the vehicle is in use and external forces act on the clamped parts. All fasteners have a specified torque. The method used for a particular application is determined by engineering and specified in the service information. It is necessary to apply the fastener torque to the specific fastener identified.

There are three different methods for the specification of tightening fasteners:
• Torque (T)
• Torque + Angle (TA)
• Torque + Angle-to-Yield (TAY) (sometimes referred to Torque-to-Yield (TTY)).

Torque
A fastener with a torque specification can be tightened with a conventional torque wrench. Generally, externally threaded fasteners (bolts, screws, studs) tightened to this specification method can be reused unless otherwise specified in the service information.

Torque and Angle
A fastener with a torque and angle specification must be tightened first to the torque part of the specification and then tightened further by the addition of the specified angle. The angle must be applied relative to the mating fastener, if present, or relative to the mating surface.

Torque and Angle-to-Yield
A fastener with a torque and angle-to-yield specification is tightened in the same way as the fastener with the torque and angle specification. The difference between a torque + angle specification and a torque and angle-to-yield specification is that the tightening results in permanent deformation of the externally threaded fastener. Externally threaded fasteners tightened to this specification method must not be reused and must ALWAYS be replaced if loosened.

Tightening in Stages
Generally, service information specifies a fastener tightening specification in stages. An individual fastener with a torque specification is tightened to the specified torque in one pass.

For torque and angle and torque and angle-to-yield specification fasteners, the fasteners are tightened in stages. All the fasteners are tightened to a torque specification on the first pass. Next, they receive another tightening to a specified angle on the second pass. Sometimes more than two passes are required.

Reusing the Fastener
For an externally threaded fastener (bolt, screw or stud) as a spring. As the threads are tightened, the spring is stretched. With a conventional torque or torque + angle tightening specification, the spring returns to its original length when loosened. In the case of a torque + angle-to-yield tightening specification, the spring is overstretched (plastically deformed) and does not return to its original length. For this reason, the torque + angle-to-yield tightening specification requires the externally threaded fastener to ALWAYS be replaced.

You May Also Like

Ride Height Sensors

If one of these sensors is replaced, it must be calibrated after it is installed.

Ride-height sensors not only measure the position of the suspension, but also the rate of movement. They are supplied with a voltage of around 5 volts. The signal voltage is changed as a magnet moves past a coil. Most sensors have three wires — ground, power and signal.

Internally, it is difficult to damage one of these sensors. Externally, the linkage that connects the sensor to the suspension arm can also be damaged. The connector can be damaged and cause a short or open and a code will be set. If one of these sensors is replaced, it must be calibrated after it is installed.

Ride Control For Electric Vehicles

Replacement units are available from sources other than the dealer.

Brake Pad Edge Codes

The “Edge Code” can tell you information about a brake pad’s friction material.

Chassis Parts and Alignment Angles

Knowing why the adjustment is required is critical to performing the total alignment.

Suspension Upgrades – Selling Shocks and Struts

The question customers fail to ask is, what is “best” for their vehicle?

Other Posts

Air Ride Suspension Diagnostics

The key to understanding the logic of air ride systems is using service information.

Steering Angle Sensor Operations

It is important for the ABS/ESC module to receive two signals to verify the steering wheel’s position.

Chassis Alignment

The source of the complaint can be the angles, electronics or tires.

Laying Out Your Shop for ADAS/EV Repairs

With so many vehicles equipped with some form of ADAS, rethinking your electronics layout or plan might be in order.