Variable Ratio Steering Systems

Variable Ratio Steering Systems

Recently, Audi and other manufacturers have introduced and experimented with variable-ratio steering systems.

One of the most common crashes today happens when the driver overreacts and overcorrects the steering wheel. What should have been a simple emergency lane change turns into a “tank slapper” where the vehicle careens across all lanes as the stability control system and driver fight to regain control. One solution to this problem is controlling the amount of steering input. 

Most vehicles with electric power steering can control driver input by increasing the effort required to turn the wheel to prevent an overcorrection during a electronic stability control event. But the steering ratio is fixed.

To avoid a tank slapper, it might make sense to install a very slow ratio steering rack. But this would require a lot of motion in the steering wheel to turn or park. 

The first attempt at variable-ratio steering was in 1997 with the Honda Variable Gear Ratio Rack on some Japanese models. At the center of the rack, the space between the teeth was smaller and the space became larger as the pinion moved down the rack. In the middle of the rack was a higher ratio and the ratio became lower as the steering wheel was turned toward lock. This made the steering less sensitive when the steering wheel was close to its center position. But as the steering was turned towards the stops, the ratio would quicken.

In the past five years, Audi and other manufacturers have introduced and experimented with variable-ratio steering systems as more and more steering systems have become electric. In 2016, Ford introduced the adaptive steering system on the Edge and today is using the technology on several vehicles including the Ford F-150 Super-Duty. 

The adaptive system dynamically changes the steering ratio between the steering wheel and the road wheels. This is done with a motor, worm gear and toothed. All adaptive steering system components are inside the steering wheel, behind the airbag.

The steering effort control module (SECM) controls the motor that changes the position of the variable-ratio mechanism. The changes to the ratio occur quickly. The primary inputs are steering position, torque and vehicle dynamics. 

SECM communicates with many modules. The steering angle sensor module (SASM) and power steering control module (PSCM) inputs are used to sense inputs from the driver. The ABS module monitors vehicle dynamics. Other inputs like data from the imaging processing module A (IPMA) is used during lane departure corrections.

The adaptive steering system is designed with a locking device. While the lock is engaged, the steering system is set to a fixed (1:1) steering ratio. A sound may be heard when the vehicle is started or shut off as the lock is disengaged or engaged and a slight movement of the steering wheel may be noticed while the locking action is taking place. 

If the vehicle loses electrical power or the SECM detects a fault while driving, the lock is engaged. Extreme operating conditions may also cause the SECM to engage the lock. This strategy prevents overheating and permanent damage to the adaptive steering system.

Typical steering and driving maneuvers allow the system to cool and return to normal operation. 

While the lock is engaged, it is possible the steering wheel may not be straight when the vehicle is driving straight ahead and the driver may notice the steering wheel angle might be off-set.

The locking solenoid also engages when the ignition is set to ON and the driver’s door is closed, this prevents the steering wheel from turning unnecessarily while the system is off. The locking solenoid disengages once the engine is started.    

Variable-ratio steering is coming and will add a new wrinkle to steering system diagnostics.

You May Also Like

Ride Control For Electric Vehicles

Replacement units are available from sources other than the dealer.

EVs are not immune to potholes, curbs and rough roads. Just like every internal combustion vehicle on the roads, the shocks, struts and springs will eventually degrade to the point where they can no longer control the movement of the suspension. 

Most EVs have a weight problem that works to your advantage. The weight of the battery and motor can make some EVs 1,000-3,000 pounds heavier than their internal combustion counterparts. This will cause extra stress on the suspension.

Brake Pad Edge Codes

The “Edge Code” can tell you information about a brake pad’s friction material.

Chassis Parts and Alignment Angles

Knowing why the adjustment is required is critical to performing the total alignment.

Suspension Upgrades – Selling Shocks and Struts

The question customers fail to ask is, what is “best” for their vehicle?

Air Ride Suspension Diagnostics

The key to understanding the logic of air ride systems is using service information.

Other Posts

Steering Angle Sensor Operations

It is important for the ABS/ESC module to receive two signals to verify the steering wheel’s position.

Chassis Alignment

The source of the complaint can be the angles, electronics or tires.

Laying Out Your Shop for ADAS/EV Repairs

With so many vehicles equipped with some form of ADAS, rethinking your electronics layout or plan might be in order.

Broken Springs

What is the cause for the failure? Why does it occur with specific vehicles?