Rust on Brake Lines and Pads

Brake Corrosion Science: Why Rust On Brake Lines And Pads Is Not Normal

You know what rust and corrosion look like, but what is it? Why does it cause holes in some metal parts while causing others to seize? It is not a simple answer. Understanding the mechanics of rust and corrosion is critical in repairing the vehicles and preventing corrosion from happening.

You know what rust and corrosion look like, but what is it? Why does it cause holes in some metal parts while causing others to seize? It is not a simple answer. Understanding the mechanics of rust and corrosion is critical in repairing the vehicles and preventing corrosion from happening.

Corrosion is a perfect phenomenon that affects all material. It is a process called oxidation that can occur to metal, rubber and even plastic. It is essentially oxygen and other elements in the environment attacking the parts of a vehicle.

Mining to Manufacturing

In its stable state iron ore stable is, for the most part, rusted or oxidized. This is iron’s natural state where it is the least reactive.

When the ore reaches the foundry or mill, it is smelted in a furnace. Carbon and other elements like chromium and nickel are added to the mix to make an alloy of steel. The steel may go through further processes to improve other characteristics like hardness and corrosion resistance.

Then it is stamped into rolls, sheets or plates. From there it is shipped where it is stamped and formed into the final product. In the case of a brake pad backing plate, it is stamped with a large hydraulic and mechanical presses. For brake lines, the steel is rolled, welded and brazed to seal it internally. All of these manufacturing steps add energy to transform the raw ore into a finished product.

Call it entropy or thermodynamics. Like all things in nature, most things want to go back to their natural state. The iron from the ore seeks to release the energy that was put into it during the manufacturing process and return to being an ore. This time around, it will not end up in the ground; it will end up in the gutter or on your shop floor as flakey rust.

Corrosion Results

Corrosion on the brake components is not normal. Rust is a sign that a critical layer of protection has failed. Corrosion leads to a transformation of the surface of the material and eventual erosion of the metal.

For brake lines in the late 1990s, many manufacturers switched to a mild steel line that was covered with a plastic coating. The coating worked to prevent corrosion until it was damaged. When being sandblasted by road debris injured the coating, corrosion took hold and worked its way under the coating causing it to flake off. Eventually, corrosion would erode the metal and cause the line to burst, and the brake pedal would sink to the floor.

The solution for the OEMs was using better steel, galvanized plating and better coatings. Also, OEMs got better at protecting the lines with splash shields.

For brake pads, corrosion can result in a safety condition just as bad as a hydraulic failure. The main part of the brake pad corrosion attacks is the backing plate. Like brake lines, some brake pads lose the protective layer that safeguards the interface between the friction material to the backing plate.

Corrosion can affect the bond of the friction material with the steel. It can cause the friction material to detach or delaminate from the steel of the backing plate. This often happens in an area of the of the pad or line that is not protected by paint or plating. Like the brake lines, once corrosion has taken hold, there is no stopping it.

In a worst-case scenario, the corrosion causes a large portion of the friction material to separate from the backing plate. This can increase the stopping distance of the vehicle.

There are two ways to prevent corrosion on backing plates. The first way is to use better grades of steel alloys that contain the optimal mixture of raw components and have fewer impurities. For example, the quality of the steel and how the steel is milled can cause oxides or “mill scale” to form on the surface of the finished steel. When the brake pad backing plate is stamped, or a brake line is formed, these precursors of corrosion could be driven into the steel used for the final brake pad. These oxides are like carcinogens that start small, but can cause a tumor.

The second method to prevent corrosion is to apply an outer layer to prevent the environment from interacting with the steel and causing oxidation. External coatings like paint or plating only work if they are attached. The more resistant the outer layer is to heat, mechanical and chemical damage, the lower the chance of corrosion.

Many pads use a protective layer of paint or powder coating to protect the backing plate. This is applied after the friction material is mated with the backing plate. This protects the exposed metal surfaces. Galvanization is a plating process where an outer layer of zinc is applied to the backing plate by electroplating. Zinc does corrodes, but at a much lower rate than steel and acts as a sacrificial layer.

Galvanization is performed before the friction material is attached to the backing plate. By galvanizing the surface between the backing plate and friction material, the possibility of corrosion that can cause edge lift and delamination is potentially reduced.

If you are inspecting brakes on a vehicle, don’t assume rust and corrosion are normal. Take time to look at the critical areas like the brake lines, and pull the caliper to look at the brake pads to make sure the corrosion has not attacked the area where the friction material attaches to the backing plate.

You May Also Like

Standard Motor Products Announces 123 New Numbers

The release provides new coverage in 53 distinct product categories and 47 part numbers for 2023 and 2024 model-year vehicles.

Standard Motor Products, Inc. (SMP) announced the introduction of 123 new part numbers in its March new number announcement. The release provides new coverage in 53 distinct product categories and 47 part numbers for 2023 and 2024 model-year vehicles.

Internal Combustion Engine (ICE) Segment

Standard’s Fuel Injection program has expanded with eight GDI High-Pressure Fuel Pumps and GDI High-Pressure Fuel Pump Kits. Standard’s line of Variable Valve Timing components also grows with this release. VVT Sprockets have been added for Ford vehicles through 2023, and VVT Solenoids are new for General Motors vehicles. Oil Filter Housing Assemblies are new for popular European vehicles, and Oil Coolers have been added for Nissan and Subaru vehicles. Adding to Standard’s extensive Electronic Throttle Body program, new numbers have been introduced for the 2022 Ford Bronco Sport and 2022-20 Ford Escape, the company said.

BendPak Founder Don Henthorn Passes Away

Grew company from small machine shop to global leader in car lifts and garage equipment.

ASE Practice Tests Available Online

You can get a good idea of what to expect by adding the official ASE practice tests to their study plans.

AACF Celebrates 65 Years Serving the Aftermarket

AACF will be announcing more details about this commemorative fundraiser April 1st.

Auto Care Association Launches REPAIR Act Video

The goal is to emphasize the need for federal REPAIR Act legislation, according to the Auto Care Association.

Other Posts

Charging More for Brake Jobs

Here’s why charging more for brake jobs keeps customers coming back.

Understanding Passive Wheel Speed Sensor Operation

Passive types of wheel speed sensors are still used in many applications so understanding their operation is important.

Valvoline Celebrates Female Service Center Employees

Valvoline is launching a social media campaign led by its female experts who are sharing automotive preventive maintenance tips to promote accessible vehicle care for all.

ASE Education Foundation, Goodguys Continue Partnership

Goodguys is one of many industry relationships the foundation has developed to help solve the technician shortage.