AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

Thorough Brake Inspections Are Comeback Preventers And Profit Builders

How many times have you seen a hand-painted sign in a shop window that advertised a menu-priced brake pad replacement for “$XX.95 per axle.” Of course, a menu-priced brake replacement would be good if a simple brake pad replacement would cure all...


Air Filter Show & Tell: Seeing Is Believing

Air filters are normal wear items that ­require regular checks and ­replacement. Their role is to trap dirt particles that can cause damage to engine cylinders, walls, pistons and piston rings. In fuel-injected vehicles, the air filter also plays...


Build The Car Of Your Dreams In Quaker State Contest

At Quaker State, we know that happiness can’t be bought—it’s built part by part. That’s why we want to give you the opportunity to win a classic truck and customize it to the next level. Through the “Build The Car of Your Dreams” contest,...


Replace Valve Stems at the First Signs of Corrosion

Every OEM that uses metal valve stems for its TPMS sensors advises that if any corrosion is seen on the valve stem, it should be replaced. If the valve stem breaks due to corrosion, it will result in rapid deflation of the tire. The...


Honda Engine Shuts Off, But Power Mode Stays in 'On' or 'Accessory'

Models: Honda models with one-push start. Problem: When your customer shifts into Park and shuts off the engine, does the power mode stay in ON or ACCESSORY? The culprit could be a misadjusted shift cable. If it’s not adjusted correctly, it puts...


Detergents for Modern Vehicles

In the 1980s, fuel injectors were rapidly replacing carburetors. And, with more fuel-injected vehicles on the roads, it quickly became apparent that some gasoline formulations were not suited for injectors and leaner-burning engines. Most fuels either...


Are You Regularly Maintaining Your Equipment?

Technicians who are idling because the welder won’t feed wire, the hydraulic ram won’t pull chains, the booth heater won’t heat or the air compressor won’t compress enough air is a costly mistake, as labor time is the most expensive thing in any...


Celebrate 'Back To The Future' Day By Watching The Time Machine Get A 2015 Detail

    For many today is just another Wednesday, but for a lot of people it is more than just your average Wednesday, it is "Back to the Future" Day. It is a day that everyone who watched the cult classic trilogy Back to the Future recognizes...


Failed Honda PCMs And CAN System Diagnostics

In early 2014, Gary Goms received one of his most challenging e-mail requests from a shop foreman of a Honda dealership. This service manager had read a column he’d written on PCM diagnostics for ImportCar and was asking his opinion about why three...


Port of Opportunity

I was recently at a big-box electronics store and I saw a variety of OBD-II devices that are designed to track drivers, diagnose check engine lights and even perform remote starting. As a gadget geek, I was drawn into slick packaging and promises of a...


Water Pump Cavitation: What Cavitation in Pumps Means

Why Cavitation in Pumps Occurs The tiny “bubbles” of water pump cavitation can kill the pump. While you will never actually see the tiny bubbles of cavitation in pumps, you can see the damage of cavitation that looks like metal eaten by termites. That...


State-of-Charge and Charging Systems Diagnostics on Late-Model GM Vehicles

What to Know About GM State-of-Charge and Charging Systems On 2007 and up GM vehicles, using conventional battery and charging systems tests can prove inconclusive. This is because of GM’s Electrical Power Management (EPM) system designed to monitor...


Home Brakes Boosted Brakes: A look at the history of power-assisted brakes.

Print Print Email Email

  These days, we don’t even consider power brakes as something that needed invented, but merely a standard feature that we come to expect out of our daily transportation. Well they had to start somewhere. Probably the first place to look is with what got it all started; the law of fluids in motion and how it can be used to increase force. Pascal’s law of hydraulics.

 Pascal’s law states that when there is an increase in pressure at any point in a confined fluid, there is an equal increase at every other point in the container.

It took Pascal to open our eyes to what could be done “hydraulically” with a fluid. Then in the early 1920s, Pierce-Arrow became the first car to take the Pascal basic theory and add a vacuum assist to the hydraulic brake system. This “inventive” way of assisting the driver while braking is now part of our everyday driving experience.

Around 1918, a young inventor took the Pascal idea and applied it to brakes. His name was Malcolm Lougheed (later he changed the spelling of his name to Lockheed).  In 1921 the Model A Duesenberg became the first car to have hydraulic brakes. Although they were not power assisted the effectiveness of the brakes was well noted compared to the mechanical brake systems that were common at the time. In 1938, there was a car called a Tincher that used air assisted brakes, but wasn’t really considered a power-assisted system.  


Starting in the early 1940s, one of my favorite types of brake systems to study is the Hydrovac brake system. If you’re a connoisseur of mechanical things, this is one you’ll need to get up and close with. Explaining this brake system is an Olympic event. In my book, it’s one of the true “mechanical” marvels of the brake world. At first glance there are so many things going on at the same time that it looks like it shouldn’t work, but it does.

As you apply pressure to the brake pedal, the fluid pressure is increased (Pascal’s law) to a slave cylinder and the wheel cylinders. As more pressure is applied, the added pressure overcomes a sliding valve that then pushes a triangular arm that in turn rotates valves to close an atmospheric valve and open a vacuum valve which then pulls the vacuum air into a large chamber that pushes a large bellow against the valve in the slave cylinder tripling the available fluid pressure to the wheels. The harder you push on the brake pedal, the more the bellows pushes the fluid towards the wheel cylinders. As you let up on the pedal, the internal valve starts to close lowering the vacuum pressure until it reaches atmospheric air pressure.

Last year, I restored a 1956 fire/rescue truck and one of the things I had to go completely through was the brake system. I’m still amazed at how this brake system works.  For nearly 30 years this was one of the most common brake systems on most large trucks and some cars. To this day you can still find this type of power brake system used on certain applications.  In fact, rebuilt units, rebuild kits and refurbished components are still available. As long as this system has a good supply of vacuum and clean fluid, the power brake system will do the job.

Stand on the brake pedal with a lot of force and I’ll guarantee you it will put the stop on those brake shoes with crisp jolt that can throw you up against the windshield. But the thrill for me is still watching the mechanical action of the internal parts of this mechanical marvel.

If you would like more information on this system, there are several videos and informative sites on the internet. I also found an early 1950’s military training video that explained it all in detail.  


The next system is a hydroboost system. The big difference between this system and the hydrovac system is the fact that there is no vacuum used to operate the “power” in the power assist. Generally, the power is generated by the power steering pump. In some cases, an electric motor applies the needed power to increase the pressure on the brake fluid.
In these systems, when the pressure is applied by the brake pedal, a port in the master cylinder allows the higher pressure of the power steering system to aide in the overall pressure of the brake system.

This is a great system for the hobbyist that wants a clean look or doesn’t want the bulky vacuum unit under the hood. I also see this type of unit on larger delivery trucks and commercial units.  Having less parts to be concerned with compared to the hydrovac unit makes this a very reliable system.  Today, you can find these units on some production cars, delivery vans, large trucks and commercial vehicles.

If space is a premium, the hydroboost system is a good choice for that special project car.

Vacuum Boost
Vacuum boost power brakes are by far the most popular type of assisted brakes. As with the last two examples the idea is to apply additional pressure to the brake fluid allowing less effort from the operator. Vacuum brakes do not need a slave cylinder to add the extra push or the need of a power steering pump to apply the pressure.  Just good old intake manifold vacuum. (Some diesels and small output engines used a belt-driven vacuum pump.) The principal is the same in each case, but the cost effective vacuum booster wins out on average production cars and trucks.

It’s a simple system; it’s effective and downright reliable.  The main principle behind vacuum boost brakes is to take atmospheric pressure and vacuum air and move one to the other.

Since the “atmosphere” wants to always balance the pressure, the vacuum is the “lack” of atmosphere air. So, as the plunger is pushed, a valve is opened allowing the air to move towards the vacuum section, which is turned into the added force against the brake fluid.

It’s impressive to think “air” is the real strength in the booster system. But it is.  Think of it as wind moving from a high pressure area to a low pressure area. The larger the difference in “atmospheric” pressure, the more intense the wind. That speed is the key in making the vacuum booster so reactive to the touch of the brake pedal.

Mechanical things intrigue me; I love to see how they work and how they accomplish their tasks. These boosters are just a small part of what I find interesting in the world of automotive repair. The better I understand how any system works, the better I can make the right decisions on the repairs.

Now in the 21st century, we have regenerative braking systems, anti-lock brakes and stability control. Along with the old standards there are even more brake systems to study and get familiar with. Keeping up with the changes is just another part of being a good technician in today’s world.

While every day is another learning experience, I also think it’s a good idea to study the history of this automotive world. What’s old becomes new, but in a newer element.  So when you see something that you believe is a new and inventive, check the history books and you may find out that it’s not that new.

There is this one little foot note that I thought was interesting, and I guess in a way it still applies today: printed in 1909. 

The following two tabs change content below.

Scott Gonzo Weaver

Scott Gonzo Weaver is the owner of Superior Auto Electric in Tulsa, Okla. and has owned the shop for 27 years. He was given his trademark nickname Gonzowhile serving in the USMC. He is the author of the book Hey Look! I Found the Loose Nut, that can be purchased online at or at
Latest articles from our other sites:

The Right Way To Measure Customer Satisfaction In Your Auto Repair Shop

Far too many shop owners don’t measure Customer Satisfaction in their auto repair shops. It’s not that they’re not interested in the results, it’s just that they’re not exactly sure how to do...More

Should Your Shop Be Open Christmas Eve?

This year Christmas is on a Friday, and Christmas Eve is historically not a big sales day for most, so shop owners have the opportunity to offer their staff a 4-day Christmas weekend if they close on Christmas...More

New VDO Fan Assembly Coverage Offered For Mini Cooper, Toyota Rav4 And Mazda Miata

Continental Commercial Vehicles & Aftermarket has expanded its world-class VDO Fan Assemblies program with 11 new engine cooling fan assemblies for late model import vehicles. The added coverage delivered...More

Replace Valve Stems at the First Signs of Corrosion

Every OEM that uses metal valve stems for its TPMS sensors advises that if any corrosion is seen on the valve stem, it should be replaced. If the valve stem breaks due to corrosion, it will...More

JohnDow Dynamic TPMS Introduces Six Training Video Modules

JohnDow Industries’ Dynamic TPMS, in an effort to enhance its existing TPMS training program, recently introduced six training video modules. “One of the major elements for TPMS success is proper...More

IPA's Cleaners Eliminate Corrosion On Large Male Electrical Pins

Innovative Products of America (IPA's) #8076 Carbide Tube Pin Cleaners allow for quick and safe removal of corrosion from large male electrical contact pins. The #8076 pin cleaners include 10 different...More

The Right Way To Measure Customer Satisfaction In Your Auto Repair Shop

Far too many shop owners don’t measure Customer Satisfaction in their auto repair shops. It’s not that they’re not interested in the results, it’s just that they’re not exactly sure how to do...More

Gates Corp. And The National Institute For Automotive Service Excellence (ASE) Name Scott Miller 2015 Technician Of The Year

The automotive aftermarket division of Gates Corp., in collaboration with the National Institute for Automotive Service (ASE), has announced that Scott Miller of Osceola, Wisconsin, is the 2015 Gates/ASE...More