AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

Automotive Pet Peeves 2: Reader Feedback Is Overwhelming

How many auto repair pet peeves are out there? Well, enough of them that one article wouldn’t hold them all. I’ve received so many emails, texts and phone calls about my article in the February issue that I thought: why not put everyone’s pet peeve...

Read more...

Air Filter Show & Tell: Seeing Is Believing

Air filters are normal wear items that ­require regular checks and ­replacement. Their role is to trap dirt particles that can cause damage to engine cylinders, walls, pistons and piston rings. In fuel-injected vehicles, the air filter also plays...

Read more...

Searching For 'Black Holes': Job Totals Reveal Missed Selling Opportunities

The concept for Maintenance Chronicle is simple: We ask one shop to record their maintenance sales for a two-week period, and then we see what we learn from the results. This edition of Maintenance Chronicle also proved to be valuable for the shop we...

Read more...

MAZDA: Timing Belt & Chain Replacement

This month, we’re going to be looking at the ­timing components on the Mazda line of vehicles. We’ll be focusing on timing belts since they are considered a service item and will present the greater amount of opportunity for replacement. Then, we’ll...

Read more...

Honda Element Brake Job

It may look like a car that was never removed from the box it came in, but the Honda Element isn’t boxy when it comes to the brakes. Based on the CR-V platform, there is also nothing tricky when it comes to service. But, its brake system is hardware...

Read more...

The Changing Maintenance Market: New Technologies Mean More Opportunities

Most of us wake up each morning, not ­realizing that our professional world has changed even as we slept. Our first job of the day is to service a ­vehicle equipped with an oil life monitor. Not only do we discover that modern oil life monitors can...

Read more...

Converter Codes: How Long Will the Light Stay Out?

OBDII systems with faulty catalytic converters will normally store a diagnostic trouble code (DTC) when the converter begins to fail. The OBDII converters use an upstream and downstream oxygen sensor to measure the differences in oxygen content between...

Read more...

Maintaining Your Spray Guns

If there’s one piece of equipment that epitomizes the painter and the paint shop, it’s the spray gun. Over the years we’ve seen many spray guns. Although there are operating principles and functions that remain the same, some have been improved...

Read more...

Wheel Bearing Adjustment Tools & Equipment

A recent survey showed that more than half of the bearings on the road today are adjusted incorrectly. A wheel bearing that’s out of adjustment can reduce bearing life and can affect more than just the bearing. An out-of-adjustment bearing affects...

Read more...

Diagnostic Dilemma: The Case of the Missing Code

When doing mobile diagnostic work, no-code stalling complaints are a major part of your agenda. In most cases, the client shop is simply too busy to duplicate the failure or, in some cases, a long test drive will yield nothing in the way of useful...

Read more...

Secondary Ignition: The Art of Spark

What is a coil? From the beginning of the internal combustion engine, several different ignition systems have been used to create a high-energy spark. The most popular system, and the one that’s in use today, is a step-up coil. A coil is nothing...

Read more...

Diagnosing Catalytic Converter Failure Symptoms

Although construction can vary according to engine application, the common three-way catalytic converter contains a reduction and oxidation stage. To create maximum surface area, each stage is generally a ­ceramic or stainless steel honeycomb substrate...

Read more...

Home Alignment Spec Alignment & Suspension Specs: 2003-2008 Honda Pilot

Print Print Email Email

The Pilot employs a strut-type front suspension that provides a generous 7.3 inches of wheel travel. Separate load paths to the unit body are provided for the coil spring and the shock absorber to reduce road noise. A solid 0.9-inch stabilizer bar is linked directly to the strut via ball-joint connections to reduce body roll during cornering maneuvers.

The lower control arm bushings are designed to provide a stabilizing toe-out steering effect when loaded during braking or cornering. The L-shaped arm allows a very tight steering lock for good low-speed maneuverability.

The Pilot’s rear suspension is a compact, multi-link trailing arm layout. Wheel travel is a generous 4.9 inches in compression and 3.3-inches in rebound. The three links that position each rear wheel laterally run between the knuckle assembly and the subframe. A trailing arm also runs from the unit body to each rear knuckle.

Steering knuckles are an “in-wheel” design to optimize suspension geometry and packaging efficiency. Bushing compliance provides a modest toe-in effect in response to substantial cornering and braking loads to enhance overall stability. A solid 0.8-inch stabilizer bar helps reduce body motion during cornering. A new urethane bump stop is applied to the rear suspension for improved ride quality.

The Pilot employs an advanced new four-wheel drive system called Variable Torque Management 4WD (VTM-4). VTM-4 combines the best features of modern on-demand and conventional four-wheel drive systems while minimizing penalties to vehicle weight, efficiency and interior space. VTM-4 proactively delivers power to all four wheels under acceleration and when wheel slippage is detected. This has the benefit of not only improving traction in slippery conditions, but also benefits driving dynamics and vehicle stability in virtually all circumstances.

But even with a lot of similarities to other Honda vehicles, it is what happens before and after the angles are measured that can make the difference between a satisfied customer or an angry comeback.

Even with the most sophisticated alignment system, it is still possible to make a mistake or false diagnosis on the Pilot. It is important to look at more than camber, caster and toe. Look at the diagnostic angles as well as the driver, tires and how the vehicle is used.

Inspection
Always inspect the customer before you inspect the vehicle. Ask how they use their Pilot and how they load it. The independent rear suspension on the Pilot will gain significant camber and toe if it is overloaded. These altered angles can lead to tire wear on the inside edge. Even loads like batting equipment for a little league baseball team can cause some sagging.

Aftermarket rear spring airbag kits are available for the rear springs that can increase load-carrying capabilities between 500-750 lbs while improving rear tire wear. Prices for the airbags start around $100 and can go up from there depending on how the bags are inflated.

Always mark the original location of the tires before an alignment. Many pull and tracking complaints can be solved by swapping tires to cancel out the forces. Most Pilots are shod with 235/70R/16 all season tires. Due to the size of the tires and aspect ratio, Pilots are sensitive if the pressures are not equal. For most Pilots, the inflation pressure is 32 psi, but check the driver’s side door placard for the correct inflation.

Inspect the vehicle for any signs of damage like curb strikes and other damage. The knuckles and lower control arms on the Pilot are cast iron. Most damage will be confined to these components.

A side-to-side visual comparison can reveal a bent component. Bent strut rods may cause the driver to complain of inconsistent steering feel and the SAI or side-to-side tolerances to be out of spec. Also, looking at the diagnostic angles like SAI and the turning angle are important.

If your alignment equipment is able to measure the setback of the wheels, it can be a very useful tool to diagnosis a bent control arm.

Adjustments

The front caster is not adjustable on the Pilot. Honda advises looking for damaged components like the control arms and struts. The front suspension cradle cannot be adjusted to change camber or caster.
To change front camber, it is necessary to install a cam bolt kit in the lower strut mounting hole to adjust camber. This will give you ±1.75º.

The rear suspension is the multi-link setup. Only toe is adjustable with cam plate bolts on the inboard side of the lower control links. This adjustment yields very little adjustment, it is designed to only compensate for wear in the bushings. It the rear toe cannot be brought into specification, look for other damage in the links and bushings.

The most common culprits are the upper link with the ball joint or bushing between the knuckle and lower control arm. Always use a new self-locking nut on the cams. Assemble the adjusting bolt and cam plate with the eccentric facing up. Make sure the toe angles are close from side-to-side.

Rear camber is not factory adjustable. It is necessary to replace the upper rear link with an adjustable link that can change the camber by -2.00 degree to +4.00º.

VSA Sensor Neutral Position Memorization

Most Pilots are equipped with stability control called VSA. After any toe adjustment or steering component replacement, it is necessary to reset the steering position sensor. This process does not require a scan tool. Disconnecting the negative battery cable can create more problems than it solves.

If the error in the steering angle is large enough, it will disable the system and turn the system’s malfunction indicator light on to alert the driver. If the error is small, it will operate as normal until certain conditions occur like driving on freeway ramps and tight streets. Under these conditions, the computer might unnecessarily activate the stability control system slowing the vehicle or even fail to respond with the right corrective action causing the vehicle to leave the road.

Do not take any chances with the reprogramming of the steering angle sensor. If your shop cannot do it, send it to a shop that can. Also, you can charge the customer for this procedure. The Honda warranty time is around .3 hours.

TECH TIP: Noise/Judder from Rear of Vehicle
If a customer with a 2003 and later Pilot or 2006 and later Ridgeline complains of a noise and judder from the rear of the vehicle when turning, the VTM-4 differential fluid could likely be contaminated by clutch wear, condensation or both. This causes the VTM-4 differential clutches to make noise and to judder when turning.

Note: Worn VTM-4 fluid that has not been replaced at the recommended service intervals can cause the same condition. Check to see if the VTM-4 fluid has been replaced at the recommended intervals.

Corrective Action:
Replace the VTM-4 differential fluid.

Parts Information:
• Drain Plug Washer (18 mm, drain plug sealing washer), P/N 90471-PX4-000; and
• Drain Plug Washer (20 mm, filler plug sealing washer), P/N 94109-20000.

Required Materials:
• VTM-4 Differential Fluid (5.6 quarts required), P/N 08200-9003.

Diagnosis:

Do 10 figure-eight patterns with the steering wheel at full lock. Listen for a noise and feel for a judder. Accelerate at the start of each circle to make sure the clutches engage and disengage. Do not use the VTM-4 LOCK button.
Note: As an alternative to doing figure-eight patterns, you may do 10 circles to the left and 10 circles to the right.
• If you can hear the noise or feel the judder, go to the Repair Procedure.
• If you cannot hear the noise and feel the judder, continue with normal troubleshooting.

Repair Procedure:

1. With the engine off, raise the vehicle on a lift in a level position.

2. Remove the differential filler plug and its sealing washer. Save the sealing washer.

3. Remove the differential drain plug and its sealing washer to drain the VTM-4 differential fluid. Save the sealing washer.
Note: The drained fluid should look red. If it looks pink, it means water entered the VTM-4 differential through the vent tube breather in the rear subframe. This can happen after launching a boat or driving through water deep enough to cover the tires. If the fluid looks pink, replacing the fluid may not get rid of the noise and judder.

4. Clean the drain plug, then reinstall it with the sealing washer you saved in step 3. Torque the drain plug to 47 Nm (35 lb.-ft.).

5. Fill the differential with VTM-4 differential fluid until the fluid level reaches the bottom of the filler hole.
Note: To avoid contamination, always fill from an unopened VTM-4 fluid container. Always use a dedicated hand-operated fluid pump to fill the differential. Use fluid pump P/N 07AAK-PGJA220 or a commercially available fluid pump. Never use a pump driven by compressed air.

6. Reinstall the filler plug with the sealing washer you saved in step 2. Torque the filler plug to 47 Nm (35 lb.-ft.).

7. Drive the vehicle in a figure-eight pattern with the steering wheel at full lock. Accelerate at the start of each circle to ensure the clutches engage and disengage. Complete at least 10 patterns.

8. With the engine off, raise the vehicle on a lift in a level position.

9. Remove the oil filler plug and its sealing washer. Discard the sealing washer.

10. Remove the drain plug and its sealing washer to drain the VTM-4 differential fluid. Discard the sealing washer.

11. Clean the drain plug, then reinstall it with a new 18 mm sealing washer. Torque the drain plug to 47 Nm (35 lb.-ft.).

12. Fill the differential with VTM-4 differential fluid until the fluid level reaches the bottom of the filler hole.

13. Reinstall the filler plug with a new 20 mm sealing washer. Torque the filler plug to 47 Nm (35 lb.-ft.).

14. Test drive the vehicle in a figure-eight pattern to make sure the noise and judder are gone. Accelerate at the start of each circle to ensure the clutches ­engage and disengage.
Note: You may need to do up to 10 patterns to get rid of the noise and judder.

 

The following two tabs change content below.

Andrew Markel

Andrew Markel is an ASE Certified Technician and former service writer, and he brings this practical knowledge to the Brake & Front End team as editor.
Latest articles from our other sites:

Beta Tools Offers Double Swivel End Socket Wrenches

Beta Tools of Italy offers #80 double-end, swivel socket head wrenches, which are made to swivel 180° on a single-plane axis to allow access to confined spaces. They are bright polished chrome vanadium...More

Electronic Specialties Introduces Its Automotive Test Lead Set

Electronic Specialties introduces a new product, #635 CATIII Automotive Test Lead Set. This kit includes a basic assortment of accessory test leads, which are in compliance with IEC Safety Rating of...More

Tips For Spark Plug Removal

Removal or installation of spark plugs on modern vehicles requires extreme precision and care. Before removing a spark plug, check to see if it’s still working properly and whether the engine itself...More

Oil Service for Today’s Vehicles

You have most likely been made aware over the last few years that you need to be diligent in which oil you choose when servicing today’s modern vehicles. Hopefully your team is trained to look up the...More

Beta Tools Offers Double Swivel End Socket Wrenches

Beta Tools of Italy offers #80 double-end, swivel socket head wrenches, which are made to swivel 180° on a single-plane axis to allow access to confined spaces. They are bright polished chrome vanadium...More

Electronic Specialties Introduces Its Automotive Test Lead Set

Electronic Specialties introduces a new product, #635 CATIII Automotive Test Lead Set. This kit includes a basic assortment of accessory test leads, which are in compliance with IEC Safety Rating of...More

Ultimate Underhood: From Mechanical Fuel Injection to Putters

Mechanical constant stream fuel injection is the pinnacle of pure mechanical engineering. The mechanic setting up the system must optimize the amount of fuel for a given throttle position, rpm and engine...More

Induction Cleaning Service For Direct-Injection Vehicles

You may have seen it before: misfire codes, stumbling and suspicious fuel trim numbers. On a scan tool, the engine may show a loss in volumetric efficiency. The driver may complain about a loss of power,...More