Tech Tip: Cam and Crank Sensor Diagnosis

Tech Tip: Cam and Crank Sensor Diagnosis

Today's cars have several different methods of producing spark and setting fuel injector pulses. All of the sensors create a nominal voltage by way of what is referred to as a "Hall effect," either from an external magnet mounted on the cam gear or body of the distributor housing, or it has its own small magnet inside itself and the Hall effect is created by passing the sensor over or near a piece of slotted metal.

Before delving into cam and crank sensors, maybe we should talk about what these sensors replaced — the distributor. It was one of the most common components on cars for more than 100 years. This spinning apparatus took the actions of a lobed wheel and transferred that mechanical movement into opening and closing a set of points, where one side was grounded and the other was isolated to the positive voltage (or the opposite for positive-grounded vehicles). Condenser: when the points open and the magnetic field collapses it also induces a current in the primary as well. It’s not very much because there are only a few windings in the primary, but it’s enough to jump a small air-gap, such as the one between the just-opening points in the distributor. That tiny spark is enough to erode metal away from the points and you’ll ‘burn’ the points. It prevents the points from arcing and prevents coil insulation breakdown by limiting the rate of voltage rise at the points. Thus, a high enough current/voltage level would be developed and produced enough to create a spark at the spark plug gap.

Old news to some, and ancient history to others, but what does that have to do with the modern cam and crank sensors? Maybe nothing in regard to how the spark is generated these days, but a lot more can be done with a cam or crank sensor than just to ­create spark. 

Today’s cars have several different methods of producing spark and setting fuel injector pulses. All of the sensors create a nominal voltage by way of what is referred to as a “Hall effect,” either from an external magnet mounted on the cam gear or body of the distributor housing, or it has its own small magnet inside itself and the Hall effect is created by passing the sensor over or near a piece of slotted metal. 

To lend some clarity and explanation, without getting into specifics for each and every model out there (because each system can have its own precise reasons for its particular use of either the cam or crank sensor), the cam sensor reads relative cam position and the crank sensor reads the relative position of the crankshaft. Both can be used to set the injector pulse or direct ignition timing. In some cases, the crank sensor is mounted on the harmonic balancer and reads off the toothed gear just behind the pulley. In other ­applications, the crank sensor is mounted on the flywheel. And, on some vehicles, the crank sensor may even be referred to as a TDC (top dead center) reference signal. 

But, to add even more confusion, there are many engine setups out there that use multiple-cam ­sensors, from import to domestics, and, in each case, the main goal of the sensors is to bring a precise ­sequence to the injection and/or the ignition system. This preciseness is one of the many factors that allow today’s engines to have higher fuel economy, better performance and lower emissions.

Nissan V6 engines, for example, have one on each cam (depending on year and engine style). On these engines, the two sensors work together to read cam positions but, along with that, the cam signal is also used as a “revolution counter.” It takes the revolution count and compares it to the input speed sensor for the transmission and determines whether or not the two numbers are within its parameters for proper ­operation. 

Example: A 2003 Maxima makes its way into your shop, with the owner complaining of a hard-to-start, long-cranking engine and a sluggish transmission. Chances are, there is a service code for a faulty cam sensor, but don’t be alarmed if there isn’t.

Start by checking the cam sensor values on the scanner to see if there is a large difference between the two sensors. (Both sensors are also the same part number.) If the values are different, you might have found your problem. (There still are other possibilities, but I’m not going to get into those.) A quick check of the transmission wiring diagram will confirm which of the two cam sensors is tied in with the transmission computer along with the engine PCM.

One more thing to think about, these sensors are “locked” into position so their relative “pick-up” point is also fixed. Timing adjustments are a thing of the past; so if the spark or the injection seems to be out of line or out of sequence, further diagnosis will be needed. 

I ran across this very problem a few years ago. ­Another shop had replaced a motor in a small import SUV and, while exchanging the motor, the tech also switched out the flywheel. The replacement engine had a different flywheel on it; I was never told whether it was from a different year or a different transmission setup. But what was clear was that the TDC sensor was almost a complete revolution off of the compression stroke, meaning… since the sensor is “fixed” into position, there was no way to move the spark back in line with the piston position. The job had to be started all over again with the correct flywheel being installed. (Luckily, the other repair shop took care of that; I just had to find out what was wrong with it.)

So, in a nutshell, understanding the cam and crank sensors on the particular engine you’re working on will lead to a quicker diagnosis and faster repair times.

You May Also Like

Standard Motor Products Announces 123 New Numbers

The release provides new coverage in 53 distinct product categories and 47 part numbers for 2023 and 2024 model-year vehicles.

Standard Motor Products, Inc. (SMP) announced the introduction of 123 new part numbers in its March new number announcement. The release provides new coverage in 53 distinct product categories and 47 part numbers for 2023 and 2024 model-year vehicles.

Internal Combustion Engine (ICE) Segment

Standard’s Fuel Injection program has expanded with eight GDI High-Pressure Fuel Pumps and GDI High-Pressure Fuel Pump Kits. Standard’s line of Variable Valve Timing components also grows with this release. VVT Sprockets have been added for Ford vehicles through 2023, and VVT Solenoids are new for General Motors vehicles. Oil Filter Housing Assemblies are new for popular European vehicles, and Oil Coolers have been added for Nissan and Subaru vehicles. Adding to Standard’s extensive Electronic Throttle Body program, new numbers have been introduced for the 2022 Ford Bronco Sport and 2022-20 Ford Escape, the company said.

BendPak Founder Don Henthorn Passes Away

Grew company from small machine shop to global leader in car lifts and garage equipment.

ASE Practice Tests Available Online

You can get a good idea of what to expect by adding the official ASE practice tests to their study plans.

AACF Celebrates 65 Years Serving the Aftermarket

AACF will be announcing more details about this commemorative fundraiser April 1st.

Auto Care Association Launches REPAIR Act Video

The goal is to emphasize the need for federal REPAIR Act legislation, according to the Auto Care Association.

Other Posts

Valvoline Celebrates Female Service Center Employees

Valvoline is launching a social media campaign led by its female experts who are sharing automotive preventive maintenance tips to promote accessible vehicle care for all.

ASE Education Foundation, Goodguys Continue Partnership

Goodguys is one of many industry relationships the foundation has developed to help solve the technician shortage.

BorgWarner Announces Plan to Reduce Supply Chain Emissions

A partnership with Manufacture 2030 will support BorgWarner in reaching its Scope 3 emissions reduction goal.

Mevotech Releases 237 New Chassis, Control Arm, Wheel End Parts

The release boosts coverage for domestic and import passenger vehicles, pickup trucks, SUVs and EVs up to model year 2023.