Engine Tech Tip: Measuring Blowby

Engine Tech Tip: Measuring Blowby

You’ve built an engine exactly the same as the last engine, but the power seems to be down 10 to 20 horsepower on the dyno. Could it be excessive blowby because of a ring sealing problem? One way to find out is to measure crankcase blowby.

By Larry Carley
Technical Editor

You’ve built an engine exactly the same as the last engine, but the power seems to be down 10 to 20 horsepower on the dyno. Could it be excessive blowby because of a ring sealing problem? One way to find out is to measure crankcase blowby.

A blowby flow meter can tell you precisely how much blowby is occurring inside the engine. Unlike a cranking compression test or a static leakdown test, a blowby test actually measures the volume of gases that are entering the crankcase past the piston rings. The flow meter allows you to measure blowby from any engine speed, all the way from idle to wide-open throttle.

A blowby test requires a blowby flow meter. The meter measures airflow, and is attached to either the crankcase vent on a valve cover breather, or the PCV valve fitting. On a V6 or V8 engine, the opening on the opposite valve cover must be temporarily blocked so all the airflow from the crankcase will flow past the meter.

When the engine is running, all blowby that leaks past the rings will flow through the crankcase, out the valve cover opening and through the blowby flow meter sensor. The meter outputs an analog voltage signal that ranges from zero to five volts. The display can then be converted into units that show you the volume of airflow per unit of time. Most engine builders typically display the reading in cubic feet per minute (cfm), though heavy-duty engine builders more often use cubic feet per hour (cfh).

One supplier of blowby flow meters said contrary to what many people think an engine typically has more blowby at idle than at higher rpms. As the speed goes up, the rings actually seal better and blowby drops.

How much blowby is normal? Dividing an engine’s maximum horsepower output by 50 will give you a ballpark number for how much blowby you would normally expect to see. For example, a street performance engine that makes around 500 horsepower will typically have about 10 cfm of blowby with conventional pistons rings and ring end gap tolerances. Higher performance engines that are built to tighter tolerances will usually have less blowby, as might those with gapless piston rings. An 800 to 900 horsepower NASCAR motor, for example, might only have 5 cfm of blowby.

Less blowby means more usable horsepower. Being able to baseline the actual blowby in an engine means you can then go back and try different ring configurations, ring types (conventional or gapless), different ring end gap settings and cylinder wall finishes to see which combination gives the best seal and the least amount of blowby.

Measuring blowby has been one of the best kept secrets with performance engine builders because it allows them to see how well the rings are or are not sealing. It also allows them to detect any ring flutter that may be occurring within a particular rpm range, and to then change the mass or end gaps of the rings to minimize the problem.

You May Also Like

Mullen Announces New CARB Certification

The certification is awarded to vehicle manufacturers who meet specific emissions standards in compliance with CARB regulations.

 Mullen Automotive, Inc., emerging electric vehicle (“EV”) manufacturer, announced certification from the  California Air Resources Board (“CARB”) on the 2025 Mullen THREE, Class 3 all-electric low cab forward chassis truck. The certification is awarded to vehicle manufacturers who meet specific emissions standards in compliance with CARB regulations. The District of Columbia and 14 states, including California, have adopted vehicle standards under Section 177 of the Clean Air Act (42 U.S.C. §7507), which requires additional approvals beyond EPA regulations.

Schaeffler Group USA Expands Product Portfolio

Seventy new parts have been added to the INA, LuK and Schaeffler Bearings portfolios in the first quarter of 2024.

Nissan CVT Clutch Point Relearn Procedure

The Adaptive Shift Control delivers responsive and powerful acceleration.

Hydraulic Power Steering Service Opportunities

Hydraulic power steering is still the choice for some platforms and applications.

Hunter Maverick Tire Changer: 19.5-inch Tire Service

Learn to handle 19.5-inch wheels, which are common on some delivery vehicles, with Hunter’s Maverick tire changer.

Other Posts

Curing Shock, Strut and Suspension Noise

As vehicles age, eliminating noise is Job 1. But ‘noise’ may mean different things to you and your customers.

Diagnostic Test Drive For Drivetrain

A driveshaft center bearing can fail due to the bearing and the rubber isolator.

Mobis Starts Construction of EV Battery System Plant in Spain

The new EV battery system plant will supply Volkswagen and is aiming for mass production by 2026.

Blink Charging UK, Evri Collaborate to Electrify Courier Fleet

EV chargers installed at Rugby enhance Evri’s sustainability efforts, supporting a greener future in parcel delivery across the UK.