TPMS Signals: Why You Should Go Outside

TPMS Signals: Why You Should Go Outside

TPMS Signals
For an outside device to interfere with a TPMS signal, it must do three things. Do you know what those are?

As TPMS is becoming more common on vehicles, more misinformation is starting to develop as consumers and shops try to understand the systems. One of these TPMS misconceptions is sensor signals.

A sensor is a transmitter of information that sends pressure and temperature data to the vehicle. Some signals also include information that identifies the sensor and the health of the battery.

A sensor is almost never a receiver. The only exception is during reprogramming. Some sensors use a tool to excite a coil inside the sensor to enter into a learn mode. Other sensors enter into learn mode by placing a magnet over the valve stem.

What tells the sensors to transmit when they are on the road? Accelerometers and specific programming tell the sensors to transmit at specific intervals and speeds. When a sensor is not turning, it’s typically not transmitting information. When it’s moving, it’s transmitting information in 15, 30 or 60 second intervals depending on the application. Not transmitting a signal all of the time saves battery life, allowing some batteries to last up to 10 years.

When a vehicle is not moving for a defined period of time, usually between 10 to 20 minutes, the sensors will go into a rest or sleep mode. Some systems require the sensors to be in this mode when the relearn procedure is initiated. This is why some systems require the vehicle to sit for at least 20 minutes.

TPMS MIL Dash lightAll TPMS sensors, tools and everything that transmits a signal has to be approved by the Federal Communications Commission (FCC). The FCC makes sure our airwaves do not clash by regulating the frequency and strength of signals. Most direct TPMS uses ultra high frequency (UHF) radio in one of the ‘unlicensed’ ISM bands (Industrial, Scientific and Medical) for transmitting the data, often around 434 MHz.

For an outside device to interfere with a TPMS signal, it must do three things. First, this outside device must be transmitting a signal in the same bandwidth. Second, it must be transmitting for a long enough period of time that it interferes with multiple transmissions from the sensor. Third, it must transmit a signal with the same code or protocols as the sensor. In other words, the interference must occur at the right time, right place and say the right things.

Most TPMS is smart enough to realize that something is interfering with the signals and will disregard a bad sample and wait for the next sensor transmission before turning on the light and warning the customer. By that time, the vehicle should have moved away from the interference source.

Cell phones cannot interfere with TPMS. The same is true with BlueTooth devices. Their signals are not continuous and they are not in the same bandwidth.

The one time interference is a problem is during the relearn process. Some OEMs recommend that the relearn process be performed away from other vehicles and outside the shop. The main concern is that sensors from other vehicles could be captured by the system.

The main culprit for sensor interference during the relearn process is not another gadget, but the car itself. A sensor can have its signal blocked by a brake caliper, control arm or other large metal object placed between the sensor and antenna. The only solution is to move the car forward a few feet to unblock the signal.

You May Also Like

The Winter Tire Opportunity – Now Is The Time

Winters tires aren’t just a luxury, it’s your job to tell your customers the positive impact that the tires can give them.

It was a frigid February morning in Chicago last year. The kind of cold that creeps into the depths of your lungs, making it difficult and even a little painful to breathe. The kind of cold that literally takes your breath away. The snow was falling as I stepped into my car and took off across The Chicago Skyway with the city lights in my rear view. It was around Gary, Indiana, that the lake effect snow engulfed Interstate 90 and made it impossible to see the road more than about 15 feet ahead as I made an unwise attempt to pass a massive snowplow in the right lane. And, it was this moment that I understood the difference between an all-season tire and a true winter tire. My life as a “tire guy” would never be the same again.

Diagnosing Audi A8 TPMS Issues

These are all the steps you’ll need to pinpoint fault issues in TPMS for 2009-2016 Audi A8 vehicles.

The Rule of 3X Tire Rotation

Proper rotation procedures maximize tread life and customers coming back.

Communicating The Effectiveness Of TPMS

A good angle to start with may be laying out the consequences of not having a working TPMS.

Servicing Tires With 18-In.-Plus Rims

Servicing any tire and wheel assembly correctly starts with having the right equipment.

Other Posts

ATEQ TPMS Tools Adds Tesla BLE Function To VT67

ATEQ’s new VT67 TPMS Tablet will be capable of reading and programming the Tesla BLE sensor.

TPMS Valve Stems – What Are The Trends? What Is The Future?

Whatever the type of stem, carelessness can result in a broken sensor or even a customer being stranded with a flat tire.

Nissan TPMS Service

The behavior of the TPMS systems is very consistent across all Nissan models.

TPMS Sensor Signals

TPMS sensor signals are low power and low frequency, with most sensors transmitting at 315MHz or 433MHz.