Tech Tip: Measure Voltage Drops to Pinpoint Problems

Tech Tip: Measure Voltage Drops to Pinpoint Problems

Believe it or not, measuring for voltage drops is the best way to find unwanted resistance in a circuit or component. The procedure is quick and easy, you can use it on both the ground and power sides of the circuit, and it's done with normal system voltage going through the circuit. Checking for continuity with an ohmmeter lets you find simple opens and shorts easily, but measuring for ....

Believe it or not, measuring for voltage drops is the best way to find unwanted resistance in a circuit or component. The procedure is quick and easy, you can use it on both the ground and power sides of the circuit, and it’s done with normal system voltage going through the circuit.

Checking for continuity with an ohmmeter lets you find simple opens and shorts easily, but measuring for voltage drops points you right to those elusive poor connections and bad switch or solenoid contacts that waste your time and make you want to pull your hair out.

A voltage drop in either the power side or the ground side of a circuit means the component isn’t getting all the current it’s supposed to from that circuit. So, it isn’t going to work the way it should, or it may not even work at all. An engine that won’t crank fast enough because of corroded battery connections is a classic example of a voltage drop.

To help you understand voltage drop, let’s take a quick look at Ohm’s Law: E = I x R. Since E = voltage, I = current and R= resistance, another way to express this equation is Voltage = Current x Resistance.

Therefore, when you have current flowing through a circuit with resistance, you’ll have a voltage drop.

To illustrate the voltage drop principle, let’s troubleshoot a light that’s dimmer than normal. First, we’ll check the power side of the circuit. See Figure 1. Connect the positive lead of your digital voltmeter to the side of the switch that’s nearest to the power source. Then connect the negative lead to the side of the switch that’s nearest to the light. Now turn on the light.

Note: You can’t check for a voltage drop unless the circuit is on (remember, there has to be current flow). Even if the component in the circuit won’t work at all, turn it on.

Let’s say your voltmeter reads 4.0V. This means there’s a voltage drop of 4.0V in the switch. The light is dim because it’s only getting 8.0V instead of 12.0V. There’s a bad connection or dirty contacts (resistance) inside the switch.

On the other hand, let’s suppose there isn’t enough voltage drop in the power side of the circuit to cause a problem (less than 1.0V, probably only 0.1 or 0.2V). So now we’ll check the ground side of the circuit (see Figure 2). Connect the positive lead of your voltmeter to the ground side of the light and the negative lead to a good body ground. Look at your voltmeter; it’s reading 3.0V. Give yourself a big hand. You’ve pinpointed a bad connection (resistance) that’s causing the light to dim.

Most of the circuits you troubleshoot aren’t this simple, but the principle remains the same:
• Find out if the voltage drop is on the power side or the ground side.
• Measure for voltage drop from the power source to the component, then from the component to ground.
• Pinpoint the exact location of the problem by referring to the appropriate ETM and measuring the voltage drop in each length of wire, across each connector, each fuse, each splice and each switch in the circuit.

Note: Make sure you use a digital voltmeter. Since a voltage drop of less than 1.0V is enough to cause a problem, an analog voltmeter just isn’t sensitive enough.

For additional information, visit www.mitchell1.com.

Technical service bulletin courtesy of Mitchell 1.

You May Also Like

Is Training For The Sake Of Training Always Worth It?

Technology changes every day. Are you keeping your techs in top shape?

We all know the value of training - or do we? Is it always valuable? Is it alway effective? Should it always take top priority?

Naturally, you want to say yes, but experts say the RIGHT training for your team's needs is what's really crucial.

This episode of Talking Shop with ShopOwner focuses on the challenges of training technicians and service advisors in the automotive industry. The guests, Dave Boyes and Ron Shanas from Today's Class, discuss the importance of training in a rapidly changing technological landscape and the difficulties shop owners face in finding time for training amidst busy schedules.

Understanding Customer Clunking And Clicking Complaints

Can Your Techs Diagnose and Repair Modern Axle Complaints?

Comprehensive Guide to Serpentine Belt and Drive System Maintenance

Properly maintaining the entire drive system prevents premature belt wear and system failure, ensuring customer satisfaction and vehicle reliability.

How Modern Car Sensors Optimize Performance and Emissions

Learn how Standard ensures accuracy, speed, and durability in their sensors to maximize engine performance and efficiency.

Chassis Parts and Alignment Angles

Knowing why the adjustment is required is critical to performing the total alignment.

Other Posts

Top 10 Wheel Bearing Torque Tips

A torque wrench is an essential tool when it comes to installing wheel bearings.

Blink CEO to Present at Energy, Power & Renewables Conference

The event is scheduled for June 17 at 1:10 p.m. ET.

Tool Time Podcast: Lumileds

Nadine and Eric sit down with Lumileds’ Aubry Baugh to discuss all the professional lighting solutions the company has to offer.

Charging More May Bring Customers Back

Here’s why charging more for brake jobs keeps customers coming back.