Diesel Injection Components

Diesel Injection Components

One thing that has been discovered with diesel fuel injection is the higher the pressure at which it is injected creates more efficiency. The purpose of common rail injection is to deliver high-pressure fuel to the injector. Fuel in a common rail system will be injected into the combustion chamber through the injector nozzle at pressures as high as 28,000 psi. This is far from the mechanical systems of the past that would inject fuel into the combustion chamber at 2,000 to 3,000 psi.

By Bob McDonald

For some time now, most of the development in diesel technology has been aimed towards making the engines environmentally-friendly. But as diesel engines have become cleaner, the power levels have also increased. This is somewhat backward to what the country went through in the ’70s with gasoline engines.

The problem back in the ’70s was we were trying to clean the engine’s emissions by adding more devices, but there were no design improvements to make any efficiency improvements. Back then, the OEs were just coming to terms with new devices to control emissions; however, technological advances and different ways of thinking have now enabled manufacturers to have the best of both worlds – more power AND a greener environment.

To find out how this is possible, we must go back to the subject of common rail injection, which we have been discussing in detail for the last few columns. Common rail injection has been in existence for a long time but has become more popular in diesel engines over the past decade. In order to have a cleaner running engine, you have to make it more efficient.  

One thing that has been discovered with diesel fuel injection is the higher the pressure at which it is injected creates more efficiency. The purpose of common rail injection is to deliver high-pressure fuel to the injector. Fuel in a common rail system will be injected into the combustion chamber through the injector nozzle at pressures as high as 28,000 psi. This is far from the mechanical systems of the past  that would inject fuel into the combustion chamber at 2,000 to 3,000 psi.

When diesel fuel is injected at high pressure, you can only imagine the difference in the fuel atomization. Fuel atomization, along with port swirl is the biggest contributing factor to the efficiency of today’s diesel engines. The increased atomization of fuel from the common rail injection also created design changes to the piston and combustion chambers along with the design of the intake ports and valve train.

In order to inject diesel fuel at high pressures, you need a very unique pump known as a high-pressure fuel pump. The pump is usually engine-mounted and driven by the engine gear train. A regulator controls the amount of pressure that the pump makes. The regulator, also known as the fuel-metering valve, regulates the amount of fuel that the high-pressure fuel pump will intake.

Even though the engine drives the high-pressure pump, the pump will produce the necessary high pressures regardless of the engine speed. After the pump has been pressurized, the fuel is stored in the fuel rails. The fuel rails are accumulators for the high-pressure fuel to be delivered to the injectors through lines that branch off of them. The fuel rails also dampen vibrations from the high-pressure fuel pump and injection cycles from the injectors.

Inside the fuel rails is a fuel rail pressure sensor that reads the pressure in the fuel rail for the PCM (Powertrain Control Module). The PCM uses the input from the fuel rail pressure sensor to determine how much to open the fuel regulator. If more pressure is needed, the PCM will command the regulator to open for more fuel to be taken in by the high-pressure pump.

A fuel rail pressure control valve also controls high-pressure fuel in the fuel rails. The pressure control valve is usually placed in the end of the fuel rail where it will be opened or closed by the PCM for precise pressure control inside the fuel rails. This helps to keep the optimum fuel pressure in the fuel rails to be delivered to the injectors for various demands placed on the engine.

Just in case the fuel pressure was to spike abnormally, the fuel rails have a fuel rail pressure limiter inside of them also. If fuel pressure were to get out of hand for some strange reason, the limiter would open allowing the excess pressure to return to the fuel tank.

As high-pressure fuel travels through the rails and lines, it arrives at the injector, which is controlled by the PCM. When the PCM commands the injector to open, fuel enters the injector and is sent through some intricate passages in the injector that leads to the injectors tip.

The tip of the injector has microscopic holes through which the fuel will be delivered that create a very fine mist. The droplet size of the fuel as it is sent through the tip is about 7 times smaller than a human hair. Injectors can be actuated by a solenoid type of driver or a Piezo electric device.

Solenoid actuated injectors have been around for some time, but have been replaced with Piezo actuation. Piezo is a type of crystal that is wafer-thin and generally stacked on top of each other. These stacks of Piezo crystals, when energized by the PCM, will expand and open the injector’s valve, and its actuation is 4 times faster than a solenoid.

The PCM uses inputs from sensors on the engine to control actuators, which control fuel delivery. Fuel delivery is based upon demands on the engine, such as the amount of boost, the throttle position, engine temperature, etc. With the use of common rail, there can be multiple injections per combustion cycle. This can also be beneficial during cold weather start-ups.

The use of common rail has brought about many advantages to the diesel engine. These advantages are higher injection pressures for increased atomization of fuel, multiple injections per combustion cycle, and more reliable pressure regardless of engine speed. The benefits include the reduction of emissions, reduction in diesel particulate matter, reduction in noise, increased fuel efficiency and increased performance.

Even though diesel engines are becoming cleaner, more emission-friendly, the use of electronics along with better engineering keeps propelling power levels and durability. I think that as diesel engines continue to evolve and get even more efficient, they will become more of a competitor for the car buying public’s transportation needs in the near future.

Article courtesy of ENGINE BUILDER.

Bob McDonald is owner of Atlantic Engines in Granite Falls, NC, and specializes in high performance diesel and gasoline engines and cylinder heads for street, marine, dirt and drag racing.

 

You May Also Like

Coats Expands Maxx Tire Changer Line With MAXX 50

The base Maxx tire changer platform now comes in 4 models total.

The Coats Company proudly announces the expansion of their Maxx tire changer line with the Maxx 50 tire changer. The Maxx 50 tire changer features many of the key Maxx features but gives low-volume shops the ability to get a best-in-class tire changer with only the essential tools they need. 

Transmissions – CVT

Knowing what the common issues are & understanding the options available to isolate & fix problems are the keys to success.

Simplifying AWD Systems

No matter the manufacturer, there is almost always an all-wheel drive (AWD) option for most platforms.

Manual Transmission Service

Parts that wear out must be replaced.

Transmission Fluid Hydraulics

You need to know how transmission fluid flows inside an automatic transmission.

Other Posts

AP Emissions Unveils August New Product Announcement

10 new 46-state Federal EPA part numbers have been released.

Hunter Engineering Expands Supply Capabilities in Missouri

Company continues to efficiently serve customers despite supply chain challenges.

Autel Adds EV Diagnostics, Maintenance to Class Roster

Classes are intended for current and potential owners of Autel EV diagnostic tablets.

SMP Expands Emission Control Program

SMP’s Emission Control program offers more than 1,500 EVAP components and 4,000 products for crankcase and EGR emissions.