AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

Selling the Complete Belt Job

Selling a belt at 90,000 miles is easy. ­But, making that new belt go 90,000 miles might be impossible without selling the complete belt job. With zero miles on an odometer, the belt is operating in the best possible ­environment. The tensioner is...

Read more...

APA Is ‘Shifting Into High Gear’ With 2015 Conference

Automotive Parts Associates’ (APA) 34th Annual Shareholders’ and Manufacturers’ Conference, held March 18-20 at the Hyatt Century Plaza, Los Angeles, lived up to its theme, “Shifting Into High Gear,” revving up attendees for another successful...

Read more...

Expanded R&D Facility at Arnott Air Suspension Products Underscores Commitment to Quality, Innovation

Arnott Air Suspension Products -- an aftermarket air suspension products and accessories company -- announced it recently christened a new Engineering/Research and Development center dedicated to developing and producing air suspension products worthy...

Read more...

Mazda: Fuel System Servicing Precaution

Applicable Models: 2004-’07 Mazda3 2005-’07 Mazda6 2006-’07 MX-5 vehicles During service/removal of fuel system parts on the above vehicles, the memory of the malfunctions and the long-term fuel trim need to be cleared by either removing the...

Read more...

Audi: Transmission Does Not Shift Due To Cabin Air Filter

Model: 2001 Audi A6 Avant Quattro, 2.8L Complaint The customer states the transmission does not shift. Cause Confirmed the customer’s complaint and found the transmission did not shift. Inspected the automatic transmission fluid level and condition...

Read more...

Kia Driveability Diagnostics: Chasing Intermittent Gremlins

This month, we find ourselves looking at a 2004 Kia ­Sorrento that the owner says is losing power and stalling with no established pattern. It will run well for days or even weeks at a time without a problem, only to then act up without warning,...

Read more...

Educating Drivers, Technicians and Service Advisors with Dill’s New TPMS Videos

Dill Air Controls continues to bring new awareness to the automotive industry and today’s drivers with the latest launch of their TPMS training and educational videos. “The importance of having the proper air pressure in tires and regularly servicing...

Read more...

5 Mistakes Newbie Tire Techs Make

Ah, brand-new tire techs. I think of them somewhat as similar to puppies: cute, eager to please and clumsy as all get-out. Feed them regularly, play fetch the new tire with them, and make sure they get paper-trained (with training). Nothing can...

Read more...

Equipment and Tool Institute Launches an Important Market Research Study on New Car Buying Preferences of Consumers

In an effort to assist its members in having the latest market information and bringing new and improved equipment and tools to the marketplace, The Equipment and Tool Institute (ETI) has launched a series of Market Research Projects. The current...

Read more...

Diagnostic Dilemma: The Case of the Missing Code

When doing mobile diagnostic work, no-code stalling complaints are a major part of your agenda. In most cases, the client shop is simply too busy to duplicate the failure or, in some cases, a long test drive will yield nothing in the way of useful...

Read more...

Secondary Ignition: The Art of Spark

What is a coil? From the beginning of the internal combustion engine, several different ignition systems have been used to create a high-energy spark. The most popular system, and the one that’s in use today, is a step-up coil. A coil is nothing...

Read more...

Diagnosing Catalytic Converter Failure Symptoms

Although construction can vary according to engine application, the common three-way catalytic converter contains a reduction and oxidation stage. To create maximum surface area, each stage is generally a ­ceramic or stainless steel honeycomb substrate...

Read more...

Home Brakes Measure Rotor Thickness, Runout: Stop Pulsation Comebacks Before They Start

Print Print Email Email
Let’s say a vehicle had .003” of lateral runout when measured at the outside face of the rotor. If this vehicle is riding on 205/55R16 tires, in one mile, the high-spot with .003” of runout goes past the caliper approximately 836 times. Over 6,000 miles, that spot on the rotor will go past the pads more than 5 million times. Every time this spot passes the pads, a little bit of the rotor’s material is removed. Over the course of those 5 million revolutions, enough material is removed to create a thickness variation that can be felt by the driver.
This is why it is critical to measure thickness and runout in a brake rotor and wheel flange even if new rotors are going to be installed.
Here are the recommended steps for measuring thickness and runout. These are the bare minimum steps you should be following for old and new rotors.

Before Starting
Mark the original position of the rotor with a paint or grease marker before removing the rotor.
Rotor Thickness
1. Inspect the rotor’s surface for defect, corrosion or cracks.
2. Find the discard measurements on the rotor. On some aftermarket rotors, they will be laser-etched into the sides of the plates. If a discard measurement can’t be found, look it up along with the specification for thickness variation or parallelism.
3. Using a micrometer, measure the thickness of the rotor in at least six spots that are opposite from each other.
4. Record the results. Variations in thickness should be between .001” and .003”.
Rotor Runout Measurement
1. Mount the dial indicator to a rigidly secure portion of the suspension, like the knuckle. Do not mount the arm to tie-rod ends or control arms. Position the indicator tip perpendicular to the rotor’s surface and 0.5” from the edge of the rotor.
2. Tighten down the rotor with the correct conical washers to the recommended lugnut specification.
3. Set the dial to zero and turn the rotor.
4. Mark the high and low spots of the runout. For most cars, the specification will be .002” or less.
5. Remove the rotor. Inspect the mounting surface inside the hat. Remove any corrosion or debris.

Runout in the Wheel Flange
1. Rotate the hub bearing assembly by hand. Any roughness, play or noise from the bearing is an indication of damage. Verify that the condition is normal or requires replacement.
2. The dial indicator base should be placed or clamped rigidly on a secure portion of the suspension. Position the indicator tip as perpendicular on the wheel flange as possible.
3. Set the dial indicator to zero. Next, turn the flange at least twice and observe the high and low spots of runout.
4. Mark the high and low spots of runout on the flange.
5. If the flange has more that .002”, or the readings are inconsistent, further corrective actions might need to be taken after rotor runout is measured.
Matching the Hub to the Rotor
By measuring and marking the high and low spots of runout in the hub and rotor, it is possible to match the high spot of runout in the hub with the low spot of runout in the rotor. This technique can be used to minimize the amount of material removed with an on-the-car brake lathe.
Flange runout can be corrected with tapered shims that are available to correct a runout of 0.003” (0.075 mm) to 0.009” (0.230 mm). A runout of more than 0.005”(0.125 mm) at the bearing flange cannot be corrected by the use of a shim. The combination of the rotor and bearing flange could prevent the rotor from being turned. Check the bearing flange runout after friction surface runout. Check flange runout by changing the rotor position 180º on the bearing. If the high spot changes 180º, the rotor could be OK or ready to turn after the bearing is shimmed.
Components should be marked as you perform an inspection of the assembly. Check the bearing endplay. Mark the relation of the rotor to the bearing flange. Mark the rotor high and low runout spots on the rotor friction surface. The low spot marked as zero and the high spot as 0.XX”. Mark the high and low runout spots on the bearing flange with the same method as the rotor friction surface.
Once you have collected the data, the following comparisons should be made:
• If the endplay exceeds manufacturer’s specifications, replace the bearing and recheck runout.
• Compare bearing flange to rotor runout position.
• If the shim cannot correct the runout, the bearing should be replaced.
• Check the rotor thickness. The minimum dimension should be stamped or cast into the rotor. There has to be enough thickness to cover the runout without going below the minimum thickness.
On-the-Car Runout Minimization
Today, you can purchase an on-the-car brake lathe that, after it has been attached to the vehicle, will automatically compensate for runout — quick and easy.
In some cases with excessive runout, a new rotor should be machined to match the vehicle, which helps to match the rotors to the hub flange.
Using an on-the-car lathe can help to reduce runout on new rotors. The main advantage of these lathes is that they are able to cut a rotor in its operating plane. This means that the rotor is machined to match the hub.
It has often been said that you should never machine new rotors, but what if the runout exceeds the manufacturer’s specifications when the new rotor is installed on the vehicle? This situation makes it permissible to machine a new rotor with an on-the-car brake lathe.
The following two tabs change content below.

Andrew Markel

Andrew Markel is an ASE Certified Technician and former service writer, and he brings this practical knowledge to the Brake & Front End team as editor.
Latest articles from our other sites:

Beta Tools Offers 3/4" Drive Impact Wrench

The 1928CD 3/4" Drive Impact Wrench from Beta Tools features a powerful rotor with an unscrewing high torque of 1327 ft.-lbs. (1,800 Nm), and three power adjustable screwing positions. This double hammer...More

Fuel Filter Explanation

MAHLE Aftermarket’s Bill McKnight explains the surprising involved and complicated world of fuel  filters in today’s pass cars and light trucks. You’ll be amazed at both the design and complexity...More

Mazda: Fuel System Servicing Precaution

Applicable Models: 2004-’07 Mazda3 2005-’07 Mazda6 2006-’07 MX-5 vehicles During service/removal of fuel system parts on the above vehicles, the memory of the malfunctions and the long-term...More

The Active Safety Technology of the 2016 Acura RLX

The 2016 Acura RLX luxury sedan, now on sale, boasts an abundance of standard premium attributes and features, including a 310 hp, direct-injected i-VTEC V6 engine. Available on all trims and standard...More

Beating the Heat and the Clock with A/C Service Centers from Snap-on

The Snap-on line of A/C Service Centers combine modern technology with a time-saving interface system designed to help customers prepare for the warmer months ahead. With models meeting SAE standards,...More

Mobility in the Shop with K-Tool’s New Four-Drawer Locking Service Cart

K-Tool International (KTI) introduces a 4-Drawer Locking Service Cart (P/N KTI75146) bringing you and your tools the mobility you crave and the flexibility you need. The service cart comes with...More

Diagnostic Dilemma: The Case of the Missing Code

When doing mobile diagnostic work, no-code stalling complaints are a major part of your agenda. In most cases, the client shop is simply too busy to duplicate the failure or, in some cases, a long...More

Secondary Ignition: The Art of Spark

What is a coil? From the beginning of the internal combustion engine, several different ignition systems have been used to create a high-energy spark. The most popular system, and the one that’s in...More