AfterMarketNews Auto Care Pro AutoProJobs Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service

The Problem With Living In The 'Now'

I once had a shop manager who concentrated on the “now.” Every day was a mad dash to complete the jobs at hand. He wanted to know who was working on what, where the parts were and when everything would be done. He was constantly reacting to a customer’s...

Read more...

ASE G1: Drive Belt Inspection, Replacement

The ASE G1 Certification test contains 55 scored questions, plus 10 unscored ­research questions, that cover a range of skills and knowledge related to maintenance and light repairs in engine systems, automatic transmission/transaxle, manual drivetrain...

Read more...

Amateurs and Hacks Provide Job Security For Automotive Service Professionals

Two cars pull up in front of my shop. The drivers didn’t come in, but I heard the commotion from my office window. The boyfriend opens the hood of his girlfriend’s car. They both stare at the engine; she tells the boyfriend that she was supposed...

Read more...

Acura: Clunk Noise While Turning

Model: Acura RSX 2005-’06 Symptom: The front suspension makes a ­clunking noise while turning. Probable Cause: The front springs are moving on the spring seats. Corrective Action: Replace both front springs and do a four­-wheel alignment. Diagnosis:...

Read more...

Inside Import Car Collision Warning, Automatic Braking Systems

Anything that moves under its own power also has to stop, so brakes have been a safety feature on cars since day one. Over the years, technical innovations such as antilock brakes (ABS) have ­improved the ability to stop with minimal skidding on...

Read more...

Intermittent Engine Misfire Analysis

Even for an experienced diagnostic technician, ­attempting to diagnose an intermittent misfire ­condition that occurs only under specific driving conditions can be a frustrating exercise. Let’s begin by getting the basics out of the way. As we know,...

Read more...

Analyzing the Cylinder Pressure Waveform from a Running Engine, Part 3

By Vasyl Postolovskyi and Olle Gladso Contributing Writers and Instructors at Riverland Technical and Community College in Albert Lea, MN   In Part 1 of this Maximizing Tools series, we discussed an alternative approach to diagnosing an engine...

Read more...

Mac Tools Is Wrenching for a Cure

In support of Breast Cancer Awareness month, Mac Tools is featuring a variety of Wrenching For A Cure products available for purchase in the Flyer 11 through Nov. 2. Featured pink products include clothing, accessories, flashlights, pint glasses, and...

Read more...

5 Tool Storage Tips

  As a technician, you likely own thousands of dollars worth of tools and equipment, and require tool storage capacity to hold them all, along with carts and accessories to help move those tools around your work area. Here are a few items...

Read more...

Battery Service and Diagnosis

A good battery with an adequate charge is absolutely essential for reliable cold starting. A weak battery, or one that is rundown, may not deliver enough amps to crank the engine when temperatures plunge and the oil thickens. Cold weather can be hard...

Read more...

Toughest Spark Plug Changes

We have all been there before: scratched arms, busted knuckles and an aching back caused by a difficult spark plug replacement job. If you think they are getting tougher every year, you are right. Every new engine design is putting the plugs deeper...

Read more...

Improving the Head Gaskets, Fasteners Relationship

The relationship between head gaskets and head bolts is an intimate one. The clamping load applied by the head bolts is what allows the head gasket to maintain its seal. For this marriage to last, there has to be constant tension – not too much,...

Read more...

Home Brakes Drum Brake Self Adjusters: Understanding These Ancient Devices

Print Print Email Email

d bridge bolts.

Opposing piston calipers are bolted to the knuckle and have pins to position the pads. Drum brakes have return springs to return the shoes to a rest position and hardware to hold the shoes to the backing plate. The shoes return to a fully retracted or rest position when the master cylinder releases pressure to the wheel cylinder. There is no compensation for lining wear.

In some cases, the master cylinder may contain residual check valves to prevent air from being drawn past the wheel cylinder cup seals when the shoes are retracted by the return springs. Before 1955, drum brakes required periodic adjustment. As the linings wore, the piston in the wheel cylinder would have to travel further to engage the shoe with the drum friction surface. The return springs would retract the wheel cylinder piston to its rest position. This caused the brake pedal to move closer to the floorboard when the brakes were applied. This was commonly referred to as low pedal.

Adjusting the brakes would move the shoes closer the drum friction surface and reduce the travel of the wheel cylinder piston. It also required more fluid in the wheel cylinder to apply the brakes. Adjustments were made by manually turning the notched wheel on the adjuster with a brake spoon for the self-energizing type.

The dual-servo drum brake with leading and trailing shoes requires a wrench to adjust the eccentric adjusting cams located on the backing plate. It took a good “sense of feel” to adjust the brakes evenly. The process was to tighten the adjuster or eccentric adjusting cam to a point where the shoes contact the drum friction surface and backing off the adjuster or eccentric adjusting cam to where the shoes just cleared the drum. It’s all in the “feel” as you turn the wheel and move the adjuster or eccentric cam.

Bendix/Wagner
The Bendix/Wagner self-energizing brake has a single anchor pin located above the wheel cylinder. The primary shoe is identified by its length and position on the shoe. The lining segment is shorter than the lining segment on the secondary shoe and is positioned toward the adjuster or heals of the shoe. When the brake is applied, the master cylinder applies hydraulic pressure to both wheel cylinder pistons.

The primary and secondary shoes engage the friction surface of the drum. The wrapping motion of the primary shoe transfers pressure through the adjusting screw and drives the secondary shoe against the anchor pin and friction surface of the drum.

The secondary wheel cylinder piston is held in its rest position as the secondary shoe is driven against the anchor pin.

The adjuster mechanism is attached to the secondary shoe. It is a mechanical device that is made up of the three components.

First, an adjusting screw that is a threaded device like a nut and bolt. The head of the bolt is a notched wheel with a cylindrical pin. A washer and slotted cap fits over the pin and engages web section of the secondary shoe. The nut is also a slotted cap that threads onto the bolt and engages the primary shoe.

Second, a lever moves on a pivot to engage and turn the notched wheel.

Third, a cable or linkage is attached to the lever and the anchor pin to move the lever at its pivot point. There are springs and retainers to hold the mechanism in place.

The adjustment takes place when the vehicle is in reverse and the brakes are applied or when the parking brake is engaged. The cable or link attached to the anchor pin pulls the lever mechanism based on the movement of the secondary shoe.

When the brakes are applied, the lever cannot move the adjuster screw because the brake pressure is being used to apply the shoes. The adjuster lever mechanism must store the adjustment and turn the notched wheel when the brake is released.

There are two types of Bendix/Wagner self-adjusters. Type 1 uses a cable attached to the anchor pin and hook that is attached to the adjusting lever. A guide holds the cable in place. A spring connects the lever to the primary shoe to contain the adjuster. Type 2 uses a cable attached to the anchor pin with a spring and guide that attaches to the lever.

Type 2 uses the same cable guide as Type 1. On Type 2, the lever is connected to the secondary shoe with a pin and return spring. A spring connects the primary and secondary shoe to contain the adjusting screw.

On the Delco Moraine type, the adjuster uses a lever assembly, linkage and adjusting screw. The lever assembly is made up of the adjusting lever with spring-loaded link. The linkage is attached to the anchor pin and spring-loaded link of the assembly. The lever is attached to the secondary shoe at the shoe hold down. A lever return spring is placed between the lever assembly and shoe. A spring connects the primary and secondary shoe to contain the adjuster.

Dual Servo
Dual Servo brakes use two primary shoes and two anchor pins. The pistons of the wheel cylinder apply both of the shoes. The adjuster is located under the wheel cylinder. The adjuster uses an adjusting screw and notched wheel and lever in the same way as the Bendix/Wagner. A lever is attached to one of the shoes to adjust the notched wheel. The lever is usually part of the parking brake assembly.

There is no pressure on the adjusting screw when the brakes are applied allowing the lever to turn the notched wheel. A return spring is used to contain the adjuster in the same manner as the Bendix/Wagner type. This is different from the Bendix/Wagner type where the adjustment takes place after the brake is released.

Adjuster Inspection
The lever and notched wheel are in contact and move against each other every time the secondary shoe moves off the anchor pin. A groove can be worn in the lever and the notched wheel will also wear. A grove worn in the lever can prevent the adjuster from working properly. The wear on the notched wheel can easily be determined when it is compared to a new adjusting screw. The cable can be stretched or frayed.

Springs and linkage can also become worn. Don’t forget that there are left and right adjusting screws. If you install one on the wrong side the lever, it will turn the screw the wrong way.

In a disc/drum application, the automatic adjusters play an important role in maintaining proper brake balance during the time when the shoes are seating to the drum. The linings on most premium replacement shoes are eccentrically ground to produce a clearance at the shoe’s heel and toe.

This allows for a closer drum-to-shoe clearance. As the brakes are applied, the center of the lining contacts the drum first. As hydraulic pressure increases, the shoe will flex allowing the lining to completely contact the drum friction surface. As the shoes wear in, there will be less flex in the shoe and it will closely fit the contour of the drum.

For the first 100 miles or more, the adjuster will be the most active and keep the brake pedal at its proper height. After the shoes have seated, the adjuster will turn the notched wheel in small increments. Replacing the adjusters can provide your customer with a repair that ensures proper brake applications and pedal height.

The following two tabs change content below.
Latest articles from our other sites:

ANCO Returns As Official Wiper Blade Of The National Hockey League

Federal-Mogul Motorparts, a division of Federal-Mogul Holdings Corp., announced that its ANCO Wipers brand is returning as the official wiper blade of the National Hockey League (NHL) for the 2014-'15...More

NHTSA Issues Urgent Warning For Airbag Recalls

On Oct. 20, the National Highway Traffic Safety Administration issued an urgent advisory to the owners of some 7.8 million cars throughout the United States about a massive recall for defective airbags. The...More

Acura: Clunk Noise While Turning

Model: Acura RSX 2005-’06 Symptom: The front suspension makes a ­clunking noise while turning. Probable Cause: The front springs are moving on the spring seats. Corrective Action: Replace both...More

Inside Import Car Collision Warning, Automatic Braking Systems

Anything that moves under its own power also has to stop, so brakes have been a safety feature on cars since day one. Over the years, technical innovations such as antilock brakes (ABS) have ­improved...More

New Snap-on Heavy Duty Catalog Offers Array Of Performance-Enhancing Tools And Equipment

The new Snap-on Heavy Duty Catalog showcases some of the most innovative tools and equipment around, including an assortment of hand tools, power tools, shop and tech equipment, tool storage units, mobile...More

Analyzing the Cylinder Pressure Waveform from a Running Engine, Part 3

By Vasyl Postolovskyi and Olle Gladso Contributing Writers and Instructors at Riverland Technical and Community College in Albert Lea, MN   In Part 1 of this Maximizing Tools series, we discussed...More

Battery Service and Diagnosis

A good battery with an adequate charge is absolutely essential for reliable cold starting. A weak battery, or one that is rundown, may not deliver enough amps to crank the engine when temperatures...More

Chemical Gasketing: Cleaning the Surface

Service technicians can now use chemical gaskets where OEs had originally used formed-in-place or pre-cut gaskets during vehicle assembly. In addition to complying with OE specs, chemical gaskets are...More