AfterMarketNews AfterMarketNews Auto Care Pro AutoCareCareerHub Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

Raybestos Partners With Schwartz Performance To Restore Classic '69 Mustang Fastback

Raybestos has joined forces once again with Schwartz Performance to restore an American icon muscle car: a 1969 Ford Mustang Fastback. “Raybestos and Mustang are the perfect match of history, leadership and innovation. Working with the first-class...

Read more...

Top 10 Brake Job Mistakes For Pads, Rotors And Calipers

Here are the top 10 brake job mistakes made by rookie technicians when replacing brake pads, rotors and calipers.   10. Not cleaning the brake slides and hardware: Just slapping new pads where the old pads once resided never works. The...

Read more...

Snap-on Brightens Up Your Workspace With New Rechargeable Shop Light

Get out of the dark and brighten up your workspace with the new Snap-on ECFBAR300 Rechargeable Shop Light. With an innovative Chip-On-Board LED efficiently delivering more light while maximizing battery power, this powerful shop light is ideal for use...

Read more...

Customer Loyalty to Vehicle Brands Spells Ongoing Maintenance Opportunities

Vehicle owners’ allegiance to brands should give us all something to cheer about. This is especially true for those of you who service import vehicles. Nine import nameplates — Infiniti, Land Rover, Lexus, Mazda, Mitsubishi, Nissan, Porsche, Subaru...

Read more...

The Element of Trust And Its Impact on a Repair Scenario

Trust: It’s an important word, and it’s one I hear a lot behind the counter at the shop. “I know you’ll treat me right because I trust what you do,” is the general sentiment. But I’ve always wondered how deep that level of comfort goes...

Read more...

Servicing Mercedes-Benz AIRMATIC Suspensions

The Mercedes-Benz AIRMATIC suspension system was introduced in 1999 on the S-Class and has subsequently been used on the E-Class and most of the automaker’s SUVs. The system employs electronically controlled air springs that provide an ideal balance...

Read more...

Ingersoll Rand's 'Real Work Real Play' Sweepstakes With Gas Monkey Garage And NASCAR Rewards A Tool User With The Ultimate Fan Weekend

Ingersoll Rand, the Official Power Tools of NASCAR and a preferred tool provider for Gas Monkey Garage, has announced the “Real Work Real Play” sweepstakes to reward automotive fans who “get it done” with a weekend of fun. Ingersoll Rand is working...

Read more...

Bosch Relaunches Boschdiagnostics.com With Mobile-Responsive Design, New Layout For North America

Bosch has announced the re-launch of boschdiagnostics.com in North America, continuing to update all of its sites to a mobile-responsive, intuitive design. The URL contains three separate sites, featuring DIY diagnostic tools (DIY), professional diagnostic...

Read more...

New Bartec Tech400Pro TPMS Tool To Be Demonstrated At NACE | CARS

Bartec USA, a North American leader in TPMS Diagnostic tools, will hold live demonstrations of its newly released Tech400Pro TPMS Scan Tool at this year’s NACE | CARS show in Detroit. Michael Rose, Bartec product manager, will conduct these demonstrations...

Read more...

BMW Recognized for Engine-Building Excellence

BMW Group’s engine-building prowess was recognized with four wins at the latest International Engine of the Year Awards. The drive unit in the BMW i8 earned two class wins as well as being declared overall winner, with a further class win being garnered...

Read more...

Diagnostic Dilemma: The Case of the Missing Code

When doing mobile diagnostic work, no-code stalling complaints are a major part of your agenda. In most cases, the client shop is simply too busy to duplicate the failure or, in some cases, a long test drive will yield nothing in the way of useful...

Read more...

Secondary Ignition: The Art of Spark

What is a coil? From the beginning of the internal combustion engine, several different ignition systems have been used to create a high-energy spark. The most popular system, and the one that’s in use today, is a step-up coil. A coil is nothing...

Read more...

Home Brakes BRAKE MATH: CALCULATING THE FORCE NEEDED TO STOP A CAR

Print Print Email Email

I made a mistake probably because of my distaste of math, now it is time to learn from it. In a three-part series, we will look at the math of brakes. We will start with the driver pushing the brake pedal and end with the pad contacting the rotor and bringing the car to a stop. Along the way, we will explore the math of boosters, quick take-up master cylinders and caliper sizing. 
 
On a mechanical level, it is easy to understand how brakes work. We all understand that brake fluid transfers force from one hydraulic component to another. But, how does this apply to how a brake pedal feels? This is where math is required.
 
You need only two simple math equations to commit to memory. First, the equation for calculating the surface area of a circle (caliper or master cylinder piston) is p(3.14) x radius2. Second, pressure is equal to the force divide by the area or pounds per square inch.  The rest of the math is just multiplication, division and addition/subtraction.

Pedal Ratio
Lets start with the driver. In a sitting position, the average driver can comfortably generate 70 lbs. of force on the rubber pad at the end of the brake pedal. The brake pedal is nothing more than a 
mechanical lever that amplifies the force of the driver. This is where the pedal ratio comes into play.
 
Pedal ratio is the overall pedal length or distance from the pedal pivot to the center of the pedal pad divided by the distance from to the pivot point to where the push rod connects.
 
The optimal pedal ratio is 6.2:1 on a disc/drum vehicle without vacuum or other assist method. This means that the 70 lbs. the driver has applied now is amplified to 434 lbs. (6.2 x 70 lbs.) of output force. The problem is that the travel of the pedal is rather long due to the placement pivot point and master cylinder connection.
Brake Boosters
A booster increases the force of the pedal so lower mechanical pedal ratio can be used. A lower ratio can give shortened pedal travel and better modulation. Most vacuum boosted vehicles will have a 3.2:1 to 4:1 mechanical pedal ratio.
 
The size of the booster’s diaphragm and amount of vacuum generated by the engine, will determine how much force can be generated. Most engines will generate around -8 psi of vacuum (do not confuse with inches of HG or Mercury). If a hypothetical booster with 7-inch diaphragm is subjected to -8 psi of engine vacuum, it will produce more than 300 lbs. of addition force. Here is the math:
 π(3.14) X radius(3.5)2 = 38.46 sq/inches of diaphragm surface area X 8 psi (negative pressure becomes positive force)= 307.72 lbs of output force
To keep things simple, let’s return to our manual brake example. The rod coming from the firewall has 434 lbs. of output force. When the force is applied to the back of the master cylinder, the force is transferred into the brake fluid.
The formula for pressure is force divided by the surface area.  
If the master cylinder has a 1-inch bore, the piston’s surface area is .78 square inches. If you divide the output force of 434 lbs. by the surface area of the piston, you would get 556 psi(434 lbs. divided by .78 inches) at the ports of the master cylinder. Not bad for a 70 lbs. of human effort.
If you reduce the surface area of the piston you, will get more pressure.
 
This is because the surface area is smaller, but the output force from the pedal stays the same. If you used a master cylinder with a bore of .75 inches that has a piston that has .44 inches of piston surface area, you would get 986 psi at the ports for the master cylinder (434 lbs. divided by .44 inches).
 
But, how is this force transferred to the calipers? How does the size of the caliper piston change the force needed to push the brake pad to the rotor? We will explore this next month. 
The following two tabs change content below.

Andrew Markel

Andrew Markel is an ASE Certified Technician and former service writer, and he brings this practical knowledge to the Brake & Front End team as editor.
Latest articles from our other sites:

Customer Loyalty to Vehicle Brands Spells Ongoing Maintenance Opportunities

Vehicle owners’ allegiance to brands should give us all something to cheer about. This is especially true for those of you who service import vehicles. Nine import nameplates — Infiniti, Land Rover,...More

Autel's MaxiSYS Elite Offers Faster Processor, New Docking Station

The MaxiSYS Elite is the latest addition to Autel’s MaxiSYS family of diagnostic tools. The new Elite features a faster processor, higher screen resolution, faster WiFi, longer battery life and Android’s...More

Customer Loyalty to Vehicle Brands Spells Ongoing Maintenance Opportunities

Vehicle owners’ allegiance to brands should give us all something to cheer about. This is especially true for those of you who service import vehicles. Nine import nameplates — Infiniti, Land Rover,...More

Top 10 Subaru Articles

We're counting down the top ten most effective Subaru technical articles ever! 10) Tech Tip: Subaru Impreza With DTCs P0705, P0851, P2746, P2750 And/Or No Crank, No Start If you receive a customer...More

Autel's MaxiSYS Elite Offers Faster Processor, New Docking Station

The MaxiSYS Elite is the latest addition to Autel’s MaxiSYS family of diagnostic tools. The new Elite features a faster processor, higher screen resolution, faster WiFi, longer battery life and Android’s...More

Save Time Installing TPMS Using Dill's Preset Torque Tools

Dill TPMS Torque Tools are designed to easily install the hex nut on the valve stem. The torque values are preset, eliminating the need to adjust a torque wrench before and after install. Dill’s...More

Top 10 Fuel Pump Fails

10. Strainer Blocks Fuel-Level Sender A fuel pump inlet strainer may be installed that is interfering with the travel of the fuel-level sensor’s float arm, which causes an optimistic fuel level...More

GMC Yukon No-Cranking Complaint: The 1,300-Mile Test Drive

This month’s Diagnostic Dilemma is about the technical and professional issues involved with attempting to diagnose an extremely random no-cranking complaint on a 2003 GMC Yukon equipped with the 5.3L...More